Zenode.ai Logo
TMS320C44GFW60 - 388-BGA-GFW

TMS320C44GFW60

Active
Texas Instruments

IC DSP 388-BGA

Deep-Dive with AI

Search across all available documentation for this part.

Documents
TMS320C44GFW60 - 388-BGA-GFW

TMS320C44GFW60

Active
Texas Instruments

IC DSP 388-BGA

Deep-Dive with AI

Documents

Technical Specifications

Parameters and characteristics commom to parts in this series

SpecificationTMS320C44GFW60TMS320 Series
--
Clock Rate60 MHz1 - 1000 MHz
Clock Rate-1 - 600 GHz
Clock Rate-1.2 GHz
Clock Rate-720 MHz
Connectivity-uPP, SPI, UART/USART, I2C, McBSP, CANbus, USB, SCI, EBI/EMI
Connectivity-CANbus
Connectivity-UART/USART
Connectivity-SCI
Connectivity-SPI
Connectivity-I2C
Connectivity-McBSP
Connectivity-UART/USART, SCI, SPI, CANbus, I2C, LINbus, EBI/EMI, USB, McBSP, uPP
Connectivity-USB
Core Processor-C28x, C2xx DSP
Core Size-32-Bit Single-Core, 16-Bit
Core Size-32-Bit Dual-Core
Data Converters-D/A 3x12b
Data Converters-A/D 14x12b
Data Converters-10 - 12 bits
Data Converters-1 - 24
Data Converters-12 - 16 b
Data Converters-12 b
Data Converters-A/D 16x10b, A/D 20x16b, D/A 3x12b, A/D 20x12b, A/D 8x12b, A/D 24x12b, 12x16b, A/D 17x12b, A/D 14x16b, A/D 14x12b
Data Converters-10 b
Data Converters-20x12b, 9x16b
Data Converters-3x12b
Data Converters-5
Grade-Automotive
InterfaceCommunication PortsASP, UART, SPI, USB, I2C, Ethernet MAC, Host Interface, UTPOIA, Telecom, McBSP, SSP, BSP, MMC/SD, I2S, EBI/EMI, UART/USART, Communication Ports, Parallel, TDM, HPI, Host Interface, McBSP, UTOPIA, PCI, McASP, 10/100 Ethernet MAC, SCI, CAN, 10/100/1000 Ethernet MAC, Ethernet, PCIe, 10/100/1000 Ethernet, TSIP, SRIO, Serial Port, LCD, Serial ATA, SD/SDIO, SATA, MMC/SD/SDIO, UPP, DDR3, Duplex Serial Port, McSPI, UHPI
Mounting TypeSurface MountSurface Mount, Through Hole
Non-Volatile MemoryExternalROM, External, FLASH
Non-Volatile Memory-8 kB
Non-Volatile Memory-1.088 - 768 kB
Number of I/O-13 - 169
On-Chip RAM8 kB1 - 896 kB
Operating Temperature [Max]85 °C70 - 125 °C
Operating Temperature [Min]0 °C-55 - 0 °C
Oscillator Type-Internal, External
Package / Case388-BBGA337-LFBGA, 100-TQFP Exposed Pad, FCBGA, 737-BFBGA, FCBGA Exposed Pad, 352-BBGA, 100-LQFP, 196-LFBGA, 304-BFQFP Exposed Pad, 305-BFCPGA Exposed Pad, 128-LQFP, 80-LQFP, 144-LQFP, 176-LQFP, 532-BFBGA, 361-LFBGA, 697-BFBGA, 684-BFBGA, 376-BBGA Exposed Pad, 529-BFBGA, 56-VFQFN Exposed Pad, 48-LQFP, 176-LFBGA, 841-BFBGA, 548-BFBGA, 132-BQFP Bumpered, 144-LFBGA, 272-BBGA, 561-BFBGA, FCCSPBGA, 176-LQFP Exposed Pad, 338-LFBGA, 144-BQFP, 176-BGA, 384-BFBGA, 64-TQFP, 352-LBGA, 1031-BFBGA, 256-BGA, 100-BQFP, 257-LFBGA, 240-LFBGA, 325-BFCPGA Exposed Pad, 625-BFBGA, 288-BBGA, 80-TQFP Exposed Pad, 548-BBGA, 38-TSSOP (0.240", 6.10mm Width), 388-BBGA, 144-TQFP Exposed Pad, 100-LFBGA, 64-BQFP, 68-LCC (J-Lead), 288-LFBGA, 201-LFBGA, 169-LFBGA, 384-FBGA, 32-LQFP, 181-BCPGA Exposed Pad, 688-BFBGA, 80-BQFP, 40-DIP, 208-LQFP Exposed Pad, 44-LCC (J-Lead), 68-BCPGA Exposed Pad, 181-CPGA, 143-VFBGA, 340-FBGA Exposed Pad
Package / Case-0.6 - 600 in
Peripherals-WDT, DMA, POR, PWM, Brown-out Detect/Reset
Program Memory Size-1 - 512 KB
Program Memory Type-FLASH, ROMless
Qualification-AEC-Q100
RAM Size-2 - 102 K
RAM Size-10K x 16, 1K x 8, 82K x 16, 4K x 16, 5K x 8
Speed-20 - 200 MHz
Supplier Device Package388-BGA (35x35)337-BGA (13x13), 100-HTQFP (14x14), 352-FCBGA (27x27), 100-LQFP (14x14), 196-NFBGA (10x10), 304-PQFP, 305-CPGA (47.25x47.25), 128-LQFP (14x14), 144-LQFP (20x20), 176-LQFP (24x24), 532-FC/CSP (23x23), 361-NFBGA (16x16), 179-NFBGA (12x12), 697-FCBGA (24x24), 684-FCBGA, 376-BGA (23x23), 529-FCBGA (19x19), 56-VQFN (7x7), 48-LQFP (7x7), 176-BGA MICROSTAR (15x15), 841-FCBGA (24x24), 548-FC/CSP (23x23), 132-BQFP, 361-NFBGA (13x13), 144-BGA MICROSTAR (12x12), 272-BGA, 561-FC/CSP (23x23), 176-HLQFP (24x24), 338-BGA (13x13), 179-BGA MICROSTAR (12x12), 144-QFP (28x28), 176-BGA (15x15), 384-FCBGA (18x18), 64-TQFP (10x10), 352-BGA (35x35), 1031-FCBGA (25x25), 532-FCBGA (23x23), 256-BGA, 256-BGA (17x17), 100-QFP (20x14), 337-NFBGA (16x16), 257-BGA MICROSTAR (16x16), 561-FCBGA (23x23), 240-BGA MICROSTAR (15x15), 325-CPGA (47.25x47.25), 144-NFBGA (12x12), 625-FCBGA (21x21), 288-FCBGA (23x23), 80-HTQFP (12x12), 548-FCBGA (27x27), 352-FCBGA (35x35), 240-NFBGA (15x15), 38-TSSOP, 388-BGA (35x35), 144-HTQFP (20x20), 100-NFBGA (10x10), 118-BGA MICROSTAR JUNIOR (7x7), 548-FCBGA (23x23), 64-QFP (14x20), 68-PLCC, 288-BGA Microstar (16x16), 201-NFBGA (15x15), 169-BGA MicroStar, 288-NFBGA (16x16), 100-BGA MICROSTAR (10x10), 384-FC/CSP (18x18), 201-BGA MICROSTAR (15x15), 32-LQFP (7x7), 181-CPGA (39x39), 688-FCBGA (23x23), 80-QFP (14x20), 40-PDIP, 208-HLQFP (28x28), 44-PLCC, 68-CPGA (24.38x24.38), 181-CPGA, 143-BGA MICROSTAR JUNIOR (7x7), 340-BGA
Supplier Device Package-12 - 40
Supplier Device Package-12 - 40
TypeFloating PointDigital Media System-on-Chip (DMSoC), Fixed Point, Floating Point, Fixed/Floating Point, DSP+ARM®
Voltage - Core5 V1 - 5 V
Voltage - Core-Variable
Voltage - I/O5 V1 - 5 V
Voltage - Supply (Vcc/Vdd)-1.14 - 4.5 V
Voltage - Supply (Vcc/Vdd)-1.26 - 5.5 V

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

TMS320 Series

IC DGTL MEDIA SOC 337NFBGA

PartClock RateOperating Temperature [Max]Operating Temperature [Min]Voltage - I/OVoltage - CoreOn-Chip RAMNon-Volatile MemoryNon-Volatile Memory [custom]TypeSupplier Device PackageMounting TypePackage / CaseInterfaceProgram Memory SizeConnectivityCore SizeProgram Memory TypeRAM SizeOscillator TypeNumber of I/OSpeedVoltage - Supply (Vcc/Vdd) [Min]Voltage - Supply (Vcc/Vdd) [Max]PeripheralsData Converters [custom]Data Converters [custom]Core ProcessorNon-Volatile MemorySupplier Device Package [y]Supplier Device Package [x]Data Converters [custom]Data Converters [custom]Connectivity [custom]Connectivity [custom]Connectivity [custom]Connectivity [custom]Connectivity [custom]Connectivity [custom]Data ConvertersGradeQualificationConnectivity [custom]RAM SizeData Converters [custom]Data ConvertersClock Rate [custom]Clock Rate [custom]Connectivity [custom]Clock Rate [custom]Data Converters [custom]Core Size [custom]Data Converters [custom]Data Converters [custom]Data Converters [custom]Package / CaseVoltage - Core
Texas Instruments
TMS320DM355CZCE270
270 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320F28374SPZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
66 K
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
Texas Instruments
TMS320C6472EZTZA6
625 MHz
100 °C
-40 °C
1.8 V, 3.3 V
1.1 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320C6202GJL200
200 MHz
90 °C
0 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA Exposed Pad
McBSP
Texas Instruments
TMS320LBC52PZA57
57 MHz
85 °C
-40 °C
3.3 V
3.3 V
2 kB
ROM
8 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP
Texas Instruments
TMS320C5514AZCH10
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL) and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL) and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries.
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320C44PDB60
60 MHz
85 °C
0 °C
5 V
5 V
8 kB
External
Floating Point
304-PQFP
Surface Mount
304-BFQFP Exposed Pad
Communication Ports
40
40
Texas Instruments
TMS320C80GF50
50 MHz
85 °C
0 °C
3.3 V
3.3 V
98 kB
External
Floating Point
305-CPGA (47.25x47.25)
Through Hole
305-BFCPGA Exposed Pad
Parallel
Texas Instruments
TMS320LC542PBK1-50
50 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
128-LQFP (14x14)
Surface Mount
128-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320F28069FPNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320C54CSTPGE
The 54CST are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors provide an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of these DSPs is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. These DSPs also include the control mechanisms to manage interrupts, repeated operations, and function calls. The 54CST are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors provide an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of these DSPs is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. These DSPs also include the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP, UART
256 kB
Texas Instruments
TMS320VC5441APGF
133 MHz
100 °C
-40 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
176-LQFP (24x24)
Surface Mount
176-LQFP
Host Interface, McBSP
Texas Instruments
TMS320C6414TBCLZ1
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320DM6435ZWT6
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C28341ZAYT
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
196 kB
Floating Point
179-NFBGA (12x12)
Surface Mount
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320F28052MPNQ
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6454BZTZ
90 °C
0 °C
1.2 V, 1.5 V, 1.8 V, 3.3 V
1.25 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320DM8127SCYED3
TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip
1 GHz, 750 MHz
90 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F2810PBKQ
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
CANbus, McBSP, SCI, SPI, UART/USART
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28063PNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320DM6435ZDU7
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM648CUT1
1.1 GHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320F28032RSHS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
64 KB
32-Bit Single-Core
FLASH
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
12 b
Texas Instruments
TMS320F28027FPTQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F28065PZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320VC5410ZGW100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
128 kB
ROM
Fixed Point
176-BGA MICROSTAR (15x15)
Surface Mount
176-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320BC52PZA57
57 MHz
85 °C
-40 °C
5 V
5 V
2 kB
ROM
8 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP
Texas Instruments
TMS320VC5507ZAY
The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.6 V
128 kB
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320F28030PNS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320C80GF60
60 MHz
85 °C
0 °C
3.3 V
3.3 V
98 kB
External
Floating Point
305-CPGA (47.25x47.25)
Through Hole
305-BFCPGA Exposed Pad
Parallel
Texas Instruments
TMS320C6678ACYP
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320DM642AGDK7
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
720 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320C5514AZCHA10
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320F206PZ
TMS320C20x Microcontroller IC 100-LQFP (14x14)
70 °C
0 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
Texas Instruments
TMS320F240PQA
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 32KB (16K x 16) FLASH 132-BQFP (24.13x24.13)
85 °C
-40 °C
132-BQFP
Surface Mount
132-BQFP Bumpered
32 KB
16-Bit
FLASH
Internal
28
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
24.13
24.13
EBI/EMI, SCI, SPI, UART/USART
1K x 8
A/D 16x10b
Texas Instruments
TMS320F28015PZS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6748BZCED4
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6424ZDU7
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28335PGFA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320VC5421GGU200
100 MHz
85 °C
0 °C
3.3 V
1.8 V
512 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6711DZDP250
The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
250 MHz
90 °C
0 °C
3.3 V
1.26 V
72 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320DM6437ZWT7
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6474FCUN
The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform.
100 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FC/CSP (23x23)
Surface Mount
561-BFBGA, FCCSPBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320F28376SPTPS
C28x C2000™ C28x Delfino™, Functional Safety (FuSa) Microcontroller IC 32-Bit Single-Core 200MHz 512KB (256K x 16) FLASH 176-HLQFP (24x24)
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320F28050PNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 32KB (16K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28032PNS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320DM368ZCEF
Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
432 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320F28066PZPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320R2812ZHHA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz ROMless 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6670ACYP2
The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.2 GHz
100 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320C5534AZHH10
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
2 Mbit
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C6713BZDP225
The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel. The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel.
225 MHz
90 °C
0 °C
3.3 V
1.26 V
264 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
27
27
Texas Instruments
TMS320C6455BGTZA
105 °C
-40 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320C32PCMA50
50 MHz
125 °C
-40 °C
5 V
5 V
2.25 kB
External
Floating Point
144-QFP (28x28)
Surface Mount
144-BQFP
Serial Port
Texas Instruments
TMS320C31PQL50
50 MHz
85 °C
0 °C
5 V
5 V
8.25 kB
External
Floating Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320C5535AZHH10
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, LCD, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320F28335ZJZQ
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320VC5416PGE120
The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
2 Mbit
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6202GLS250
250 MHz
90 °C
0 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
384-FCBGA (18x18)
Surface Mount
384-BFBGA, FCBGA
McBSP
Texas Instruments
TMS320F28035PAGT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C82GGP50
50 MHz
85 °C
0 °C
3.3 V
3.3 V
84 kB
External
Floating Point
352-BGA (35x35)
Surface Mount
352-LBGA
Parallel
Texas Instruments
TMS320C5504AZCH12
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries.
120 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320F280260PTS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 50MHz 16KB (8K x 16) FLASH 48-LQFP (7x7)
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
16 KB
32-Bit Single-Core
FLASH
3 K
Internal
22
50 MHz
1.71 V
1.995 V
C28x
I2C, SCI, SPI, UART/USART
A/D 8x12b
Texas Instruments
TMS320LBC51PZA57
57 MHz
85 °C
-40 °C
3.3 V
3.3 V
4 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP, TDM
16 kB
Texas Instruments
TMS320DM8168BCYGA2
105 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320VC5409AZGU16
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6414DGLZ6E3
600 MHz
90 °C
0 °C
3.3 V
1.4 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP
Texas Instruments
TMS320VC33PGE120
The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031). The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031).
60 MHz
90 °C
0 °C
3.3 V
1.8 V
136.25 kB
External
Floating Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Serial Port
Texas Instruments
TMS320DM320ZHK
Texas Instruments
TMS320F2812PGFA
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6711BGFN150
90 °C
0 °C
3.3 V
1.8 V
72 kB
External
Floating Point
256-BGA
Surface Mount
256-BGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320DM6433ZWT7
The TMS320C64x+™ DSPs (including the TMS320DM6433 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6433 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6433 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6433 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; a UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6433 device includes a Video Processing Subsystem (VPSS) with a Video Processing Back-End (VPBE) output. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6433 and the network. The DM6433 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6433 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6433 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6433 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6433 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6433 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6433 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; a UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6433 device includes a Video Processing Subsystem (VPSS) with a Video Processing Back-End (VPBE) output. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6433 and the network. The DM6433 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6433 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6433 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C28343ZFEQ
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
200 MHz
125 ¯C
-40 °C
3.3 V
1.1 V
260 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Automotive
AEC-Q100
Texas Instruments
TMS320BC52PJ100
100 MHz
70 °C
0 °C
5 V
5 V
2 kB
ROM
8 kB
Fixed Point
100-QFP (20x14)
Surface Mount
100-BQFP
BSP, SSP
Texas Instruments
TMS320DM8147SCYE1
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
1 GHz, 700 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F28066UPNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320F28023PTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
50 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320BC52PZ57
57 MHz
70 °C
0 °C
5 V
5 V
2 kB
ROM
8 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP
Texas Instruments
TMS320F2802PZS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM648CUTD9
900 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320F28374SPTPSR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
97
200 MHz
1.14 V
1.26 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, D/A 3x12b
Texas Instruments
TMS320C6412AGDK6
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320C6421ZWT4
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28064PZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320VC5409APGE16
The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts, The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts,
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM6443AZWT
The TMS320DM6443 (also referenced as DM6443) leverages TI's Davinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6443 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6443 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S MPU core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4752 million instructions per second (MIPS) at a clock rate of 594 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6443 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6443 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6443 includes a Video Processing Sub-System (VPSS) that has a configurable Resizer and Video Processing Back-End (VPBE) output used for display. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644X MPU core processor and the network. The DM6443 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the MPU, the DIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the MPU, allowing the MPU to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6443 to easily control peripheral devices and/or communicate with host processors. The DM6443 also provides multimedia card support, MMC/SD, with SDIO support. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6443 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6443 (also referenced as DM6443) leverages TI's Davinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6443 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6443 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S MPU core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4752 million instructions per second (MIPS) at a clock rate of 594 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6443 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6443 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6443 includes a Video Processing Sub-System (VPSS) that has a configurable Resizer and Video Processing Back-End (VPBE) output used for display. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644X MPU core processor and the network. The DM6443 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the MPU, the DIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the MPU, allowing the MPU to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6443 to easily control peripheral devices and/or communicate with host processors. The DM6443 also provides multimedia card support, MMC/SD, with SDIO support. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6443 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320C542PGE2-40
40 MHz
100 °C
-40 °C
5 V
5 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320F28068UPZPS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 100-HTQFP (14x14)
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
USB
Texas Instruments
TMS320F28379SZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
32-Bit Single-Core
FLASH
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
12x16b, A/D 24x12b, D/A 3x12b
Texas Instruments
TMS320DM368ZCE
Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
432 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320VC5471ZHKA
100 MHz
85 °C
-40 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320VC5401ZGU50
50 MHz
100 °C
-40 °C
3.3 V
1.8 V
16 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6747CZKBT3
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28032PAGT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5506PGE
The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, I2C, McBSP
Texas Instruments
TMS320C6678ACYPA
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320VC5506GHHR
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
Texas Instruments
TMS320DM6437ZDU6
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320DM642AGDK6
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320BC52PJ80
80 MHz
70 °C
0 °C
5 V
5 V
2 kB
ROM
8 kB
Fixed Point
100-QFP (20x14)
Surface Mount
100-BQFP
BSP, SSP
Texas Instruments
TMS320F28034PAGS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5506ZAY
The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
Texas Instruments
TMS320F28034PAGQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6474FZUNA2
1.2 GHz
95 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA, FCBGA Exposed Pad
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320C6414TBCLZ8
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
850 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28035PNQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6455BCTZ8
850 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320VC5510AZGW2
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
200 MHz
85 °C
0 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6424ZWT7
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C40GFL50
50 MHz
85 °C
0 °C
5 V
5 V
8 kB
External
Floating Point
325-CPGA (47.25x47.25)
Through Hole
325-BFCPGA Exposed Pad
Communication Ports
Texas Instruments
TMS320BC51PZ100
100 MHz
70 °C
0 °C
5 V
5 V
4 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP, TDM
16 kB
Texas Instruments
TMS320DM6433ZDUL
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320DM335CZCE135
135 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320VC5470GHK
100 MHz
85 °C
0 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320DM647ZUT7
720 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
320 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320F28234ZJZA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6415TBGLZ1
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28PLC83PNTR
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
3.63 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
4
I2C, McBSP, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5409AZWS16
The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts, The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts,
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
64 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6727GDHA250
250 MHz
105 °C
-40 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320F28030PNQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320C6655CZH
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320DM641AGDK6
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320C6416TBZLZ1
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320DM6441BZWT
The TMS320DM6441 (also referenced as DM6441) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6441 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6441 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4104 million instructions per second (MIPS) at a clock rate of 513 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2052 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4104 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6441 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6441 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) bus interface; one audio serial port (ASP); two 64-bit general-purpose timers each configurable as two independent 32-bit timers; one 64-bit watchdog timer; up to 71 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UARTs with hardware handshaking support on one UART; three pulse width modulator (PWM) peripherals; and two external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6441 device includes a video processing subsystem (VPSS) with two configurable video/imaging peripherals: one video processing front-end (VPFE) input used for video capture, one video processing back-end (VPBE) output with imaging coprocessor (VICP) used for display. The video processing front-end (VPFE) consists of a CCD controller (CCDC), a preview engine (previewer), histogram module, auto-exposure/white balance/focus module (H3A), and resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and charge coupled devices (CCDs). The previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer pattern to YUV4:2:2. The histogram and H3A modules provide statistical information on the raw color data for use by the DM6441. The resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The video processing back-end (VPBE) consists of an on-screen display engine (OSD) and a video encoder (VENC). The OSD engine is capable of handling two separate video windows and two separate OSD windows. Other configurations include two video windows, one OSD window, and one attribute window allowing up to eight levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. VFocus (part of the VPBE functionality and operationally (e.g., 16-bit multiplexed address/data) is also provided. The Ethernet media access controller (EMAC) provides an efficient interface between the DM6441 and the network. The DM6441 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6441 to easily control peripheral devices and/or communicate with host processors. The DM6441 also provides Memory Stick/Memory Stick Pro card support, MMC/SD with SDIO support, and a universal serial bus (USB). The DM6441 also includes a video/imaging coprocessor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6441 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6441 (also referenced as DM6441) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6441 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6441 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4104 million instructions per second (MIPS) at a clock rate of 513 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2052 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4104 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6441 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6441 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) bus interface; one audio serial port (ASP); two 64-bit general-purpose timers each configurable as two independent 32-bit timers; one 64-bit watchdog timer; up to 71 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UARTs with hardware handshaking support on one UART; three pulse width modulator (PWM) peripherals; and two external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6441 device includes a video processing subsystem (VPSS) with two configurable video/imaging peripherals: one video processing front-end (VPFE) input used for video capture, one video processing back-end (VPBE) output with imaging coprocessor (VICP) used for display. The video processing front-end (VPFE) consists of a CCD controller (CCDC), a preview engine (previewer), histogram module, auto-exposure/white balance/focus module (H3A), and resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and charge coupled devices (CCDs). The previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer pattern to YUV4:2:2. The histogram and H3A modules provide statistical information on the raw color data for use by the DM6441. The resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The video processing back-end (VPBE) consists of an on-screen display engine (OSD) and a video encoder (VENC). The OSD engine is capable of handling two separate video windows and two separate OSD windows. Other configurations include two video windows, one OSD window, and one attribute window allowing up to eight levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. VFocus (part of the VPBE functionality and operationally (e.g., 16-bit multiplexed address/data) is also provided. The Ethernet media access controller (EMAC) provides an efficient interface between the DM6441 and the network. The DM6441 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6441 to easily control peripheral devices and/or communicate with host processors. The DM6441 also provides Memory Stick/Memory Stick Pro card support, MMC/SD with SDIO support, and a universal serial bus (USB). The DM6441 also includes a video/imaging coprocessor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6441 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
256 MHz, 513 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320DM335ZCE135
135 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320F2812ZAYAR
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
85 °C
-40 °C
3.3 V
1.9 V
36 kB
FLASH
Floating Point
179-NFBGA (12x12)
Surface Mount
CAN, EBI/EMI, McBSP, SCI, SPI, UART
256 kB
Automotive
AEC-Q100
Texas Instruments
TMS320C6202GJLA200
200 MHz
105 °C
-40 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA Exposed Pad
McBSP
Texas Instruments
TMS320C6413GTS500
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320VC5409PGE-80
80 MHz
100 °C
-40 °C
3.3 V
1.8 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28066PFPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320C6713BGDP300
The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel. The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel.
300 MHz
90 °C
0 °C
3.3 V
1.4 V
264 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
27
27
Texas Instruments
TMS320F28065PFPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320F2809PZA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM640AZNZ4
The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320C6455DZTZA
105 °C
-40 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320DM8148SCYEA0
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
105 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320C6711DZDP200
The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.26 V
72 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320F28075PTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
97
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
A/D 17x12b, D/A 3x12b
Texas Instruments
TMS320C6201GJC200
200 MHz
90 °C
0 °C
3.3 V
1.8 V
128 kB
External
Fixed Point
352-FCBGA (35x35)
Surface Mount
352-BBGA, FCBGA
Host Interface, McBSP
Texas Instruments
TMS320DM6467TCUT9
The TMS320DM6467T (also referenced as DM6467T) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6467T enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467T provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units— two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467T also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467T core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 66-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467T and the network. The DM6467T EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467T to easily control peripheral devices and/or communicate with host processors. The DM6467T also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467T has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320DM6467T (also referenced as DM6467T) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6467T enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467T provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units— two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467T also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467T core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 66-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467T and the network. The DM6467T EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467T to easily control peripheral devices and/or communicate with host processors. The DM6467T also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467T has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320UC5409GGU-80
80 MHz
100 °C
-40 °C
1.8 V, 2.5 V, 3.3 V
1.8 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C5534AZAYA05
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
50 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
2 Mbit
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320VC5441PGF
133 MHz
85 °C
0 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
176-LQFP (24x24)
Surface Mount
176-LQFP
Host Interface, McBSP
Texas Instruments
TMS320F28374SZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
Texas Instruments
TMS320R2812PGFQ
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz ROMless 176-LQFP (24x24)
125 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6414TBZLZ6
600 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320DM6437ZDUQ5
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320VC33PGE120G4
The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031). The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031).
60 MHz
90 °C
0 °C
3.3 V
1.8 V
136.25 kB
External
Floating Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Serial Port
Texas Instruments
TMS320LC541BPZ-66
66 MHz
100 °C
-40 °C
3.3 V
3.3 V
10 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
Duplex Serial Port
56 kB
Texas Instruments
TMS320C5532AZHH10
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
64 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320VC5510AZAV2
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
200 MHz
85 °C
0 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6421ZDU5
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F280230DAS
The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
6
I2C, SCI, SPI, UART/USART
4K x 16
Texas Instruments
TMS320F28066PFPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320C6745DPTPT3
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6678ACYPA25
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.25 GHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320C6657CZH8
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
850 MHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320VC5502PGF300
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
176-LQFP (24x24)
Surface Mount
176-LQFP
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320LC31PQ40
40 MHz
85 °C
0 °C
3.3 V
3.3 V
8.25 kB
External
Floating Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320VC5410AZWS16
The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
128 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28334ZJZQ
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 176-BGA (15x15)
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C44GFW50
50 MHz
85 °C
0 °C
5 V
5 V
8 kB
External
Floating Point
388-BGA (35x35)
Surface Mount
388-BBGA
Communication Ports
Texas Instruments
TMS320C6722RFP200
200 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
Floating Point
144-HTQFP (20x20)
Surface Mount
144-TQFP Exposed Pad
EBI/EMI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320F28232PTPS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28234ZHHA
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F2806NMFS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28334PTPS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320VC5506ZHH
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
Texas Instruments
TMS320C6454BZTZ2
1.2 GHz
90 °C
0 °C
1.2 V, 1.5 V, 1.8 V, 3.3 V
1.25 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320C5545AZQW10
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
118-BGA MICROSTAR JUNIOR (7x7)
Surface Mount
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C6416TBGLZA8
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
850 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6748EZCEA3
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM648ZUT9
900 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320C6455BCTZA
105 °C
-40 °C
1.8 V, 3.3 V
1.25 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320DM640AZDKA4
The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
105 °C
-40 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320C6415TBCLZ7
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28023PTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
50 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F28068FPNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320F28235PTPS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6415TBCLZ1
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320VC5404PGE
This data manual discusses features and specifications of the TMS320VC5407 and TMS320VC5404 (hereafter referred to as the 5407/5404 unless otherwise specified) digital signal processors (DSPs). The 5407 and 5404 are essentially the same device except for differences in their memory maps. This section lists the pin assignments and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging. NOTE: This data sheet is designed to be used in conjunction with theTMS320C5000 DSP Family Functional Overview(literature numberSPRU307). The 5407/5404 are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors provide an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of these DSPs is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. These DSPs also include the control mechanisms to manage interrupts, repeated operations, and function calls. This data manual discusses features and specifications of the TMS320VC5407 and TMS320VC5404 (hereafter referred to as the 5407/5404 unless otherwise specified) digital signal processors (DSPs). The 5407 and 5404 are essentially the same device except for differences in their memory maps. This section lists the pin assignments and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging. NOTE: This data sheet is designed to be used in conjunction with theTMS320C5000 DSP Family Functional Overview(literature numberSPRU307). The 5407/5404 are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors provide an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of these DSPs is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. These DSPs also include the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
0 °C
3.3 V
1.5 V
32 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP, UART
128 kB
Texas Instruments
TMS320VC5510GGW2
200 MHz
85 °C
0 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320UC5402PGE-80
80 MHz
100 °C
-40 °C
1.8 V, 2.5 V, 3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
Texas Instruments
TMS320DM365ZCEF
Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
300 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C206PZA80
The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages: The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages:
80 MHz
85 °C
-40 °C
5 V
3.3 V
9 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
64 kB
Texas Instruments
TMS320F2812ZAYA
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
85 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320VC5510AGGWA1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
-40 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320BC51PZ57
57 MHz
70 °C
0 °C
5 V
5 V
4 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP, TDM
16 kB
Texas Instruments
TMS320F28031PNQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320F28022DAQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
7
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6713BGDP225
The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel. The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel.
225 MHz
90 °C
0 °C
3.3 V
1.26 V
264 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
27
27
Texas Instruments
TMS320C6474FZUN
100 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA, FCBGA Exposed Pad
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320C6727BGDH350
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
350 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C6472EZTZA
500 MHz
100 °C
-40 °C
1.8 V, 3.3 V
1 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320C6416TBCLZ7
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6657CZH
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320LF2402APGS
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 40MHz 16KB (8K x 16) FLASH 64-QFP (14x20)
125 °C
-40 °C
64-QFP (14x20)
Surface Mount
64-BQFP
16 KB
16-Bit
FLASH
2 K
Internal
21
40 MHz
POR, PWM, WDT
C2xx DSP
8
SCI
10 b
Texas Instruments
TMS320C6414TBGLZ7
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28375DZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
Texas Instruments
TMS320LC549GGU-80
80 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
32 kB
Texas Instruments
TMS320C6671ACYP
The TMS320C6671 Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with the C66x CorePac DSP runing at 1.0 to 1.25 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6671 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6671 Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with the C66x CorePac DSP runing at 1.0 to 1.25 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6671 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
4.56 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320F28021PTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
5 K
Internal
22
40 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320C6727BGDH300
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
300 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320DM8127SCYE2
TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip
600 MHz, 1000 GHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320C25FNA
This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design. This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design.
50 MHz
70 °C
0 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
68-PLCC
Surface Mount
68-LCC (J-Lead)
Serial Port
24.23
24.23
Texas Instruments
TMS320F28375SPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
32-Bit Single-Core
FLASH
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
A/D 20x12b, D/A 3x12b
Texas Instruments
TMS320F28033PAGQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28069MPNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320F28332ZHHA
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6412AGDKA5
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
105 °C
-40 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320C54V90BPGE
The TMS320C54V90 is used to implement a full-featured, high-performance modem technology, intended for use in embedded systems and similar applications. This highly integrated solution implements a complete modem using only two chips: the TMS320C54V90 DSP with on-chip RAM and ROM, and the Si3016 line-side DAA. The modem can connect to a host system serially (RS-232 functionality), or as an 8-bit peripheral to the processor in a host system. The TMS320C54V90 uses a standard Digital Signal Processor (DSP) and proprietary firmware to perform all the modem signal processing, the V.42/V.42bis compression, and AT commands interpretation for modem control functions. The TMS320C54V90 also uses the latest silicon DAA technology. This technology does not require a transformer and results in lower cost, lower power, and a smaller area for the DAA function. For serial interface applications, an integrated UART implements the serial interface with no additional hardware. The TMS320C54V90 is used to implement a full-featured, high-performance modem technology, intended for use in embedded systems and similar applications. This highly integrated solution implements a complete modem using only two chips: the TMS320C54V90 DSP with on-chip RAM and ROM, and the Si3016 line-side DAA. The modem can connect to a host system serially (RS-232 functionality), or as an 8-bit peripheral to the processor in a host system. The TMS320C54V90 uses a standard Digital Signal Processor (DSP) and proprietary firmware to perform all the modem signal processing, the V.42/V.42bis compression, and AT commands interpretation for modem control functions. The TMS320C54V90 also uses the latest silicon DAA technology. This technology does not require a transformer and results in lower cost, lower power, and a smaller area for the DAA function. For serial interface applications, an integrated UART implements the serial interface with no additional hardware.
117 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
256 kB
Texas Instruments
TMS320C6204GHKA200
200 MHz
105 °C
-40 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-BGA Microstar (16x16)
Surface Mount
288-LFBGA
McBSP
Texas Instruments
TMS320DM6467CGUTA6
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C5535AZAY05
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
320 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, LCD, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320LC545APBK-50
50 MHz
100 °C
-40 °C
3.3 V
3.3 V
6 kB
ROM
Fixed Point
128-LQFP (14x14)
Surface Mount
128-LQFP
BSP, Duplex Serial Port, Host Interface
48 kB
Texas Instruments
TMS320C6415TBGLZ6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6412AZDK7
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
720 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320F28379SPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
32-Bit Single-Core
FLASH
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320F28033PAGS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5509AZAY
The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037). The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037).
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C5533AZAY05
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
128 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C5533AZHHA10
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
128 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320DM6446AZWT
The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320LBC57PBK80
80 MHz
70 °C
0 °C
3.3 V
3.3 V
14 kB
Fixed Point
128-LQFP (14x14)
Surface Mount
128-LQFP
BSP, HPI, SSP
64 kB
Texas Instruments
TMS320DM6467CCUT6
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320DM640AZNZA4
400 MHz
105 °C
-40 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320DM6433ZDU4
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6655CZHA
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, I2C, McBSP, SPI, UART, UPP
128 kB
Texas Instruments
TMS320LF2407APGEG4
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 40MHz 64KB (32K x 16) FLASH 144-LQFP (20x20)
85 °C
-40 °C
144-LQFP (20x20)
Surface Mount
144-LQFP
64 KB
CANbus, EBI/EMI, SCI, SPI, UART/USART
16-Bit
FLASH
Internal
41
40 MHz
POR, PWM, WDT
C2xx DSP
5K x 8
A/D 16x10b
Texas Instruments
TMS320VC5402ZGU100
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320DM641AZNZ5
The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320DM6446BZWT8
The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
405 MHz, 810 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320F28034PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6202GLS200
200 MHz
90 °C
0 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
384-FCBGA (18x18)
Surface Mount
384-BFBGA, FCBGA
McBSP
Texas Instruments
TMS320VC549GGU-80
80 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320F28379DPTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320F28033PNS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28063UPFPS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 80-HTQFP (12x12)
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320VC5502GBE200
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-NFBGA (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320C6670AXCYP2
1.2 GHz
100 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320C6745DPTPD4
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
456 MHz
90 °C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28034PNQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28027PTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F28332PTPS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320F28069PFPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320F28051PNQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 64KB (32K x 16) FLASH 80-LQFP (12x12)
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28065UPZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
USB
Texas Instruments
TMS320F28053PNQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 64KB (32K x 16) FLASH 80-LQFP (12x12)
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5441ZGU
133 MHz
85 °C
0 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
169-BGA MicroStar
Surface Mount
169-LFBGA
Host Interface, McBSP
12
12
Texas Instruments
TMS320LC542PGE2-50
The TMS320C54x, TMS320LC54x, and TMS320VC54x fixed-point, digital signal processor (DSP) families (hereafter referred to as the ’54x unless otherwise specified) are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors also provide an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. These DSP families also provide a highly specialized instruction set, which is the basis of the operational flexibility and speed of these DSPs. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the ’C54x, ’LC54x, and ’VC54x versions include the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320C54x, TMS320LC54x, and TMS320VC54x fixed-point, digital signal processor (DSP) families (hereafter referred to as the ’54x unless otherwise specified) are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors also provide an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. These DSP families also provide a highly specialized instruction set, which is the basis of the operational flexibility and speed of these DSPs. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the ’C54x, ’LC54x, and ’VC54x versions include the control mechanisms to manage interrupts, repeated operations, and function calls.
50 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320C6205ZWT200
The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320F28055PNQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5506GBB
The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
Texas Instruments
TMS320DM8165SCYG4
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320C6454BCTZA
105 °C
-40 °C
1.8 V, 3.3 V
1.25 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320VC5503ZHH
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
64 kB
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320F241PGS
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 64-QFP (14x20)
125 °C
-40 °C
64-QFP (14x20)
Surface Mount
64-BQFP
16 KB
16-Bit
FLASH
Internal
26
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
8
CANbus, SCI, SPI, UART/USART
1K x 8
10 b
Texas Instruments
TMS320DM6433ZWT4
The TMS320C64x+™ DSPs (including the TMS320DM6433 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6433 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6433 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6433 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; a UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6433 device includes a Video Processing Subsystem (VPSS) with a Video Processing Back-End (VPBE) output. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6433 and the network. The DM6433 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6433 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6433 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6433 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6433 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6433 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6433 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; a UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6433 device includes a Video Processing Subsystem (VPSS) with a Video Processing Back-End (VPBE) output. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6433 and the network. The DM6433 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6433 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6433 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320F28054MPNT
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320BC51PQ100
100 MHz
70 °C
0 °C
5 V
5 V
4 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
16 kB
24.13
24.13
Texas Instruments
TMS320F2806GGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 64KB (32K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28377DPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320DM643AGDK6
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320C6203BGNY173
The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
384-FC/CSP (18x18)
Surface Mount
384-FBGA, FCCSPBGA
McBSP
Texas Instruments
TMS320F28377SPZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
82K x 16
A/D 14x12b, A/D 14x16b, D/A 3x12b
Texas Instruments
TMS320F28064UPNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320C6415TBGLZA6
600 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28035PAGQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28075PZPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
41
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
Texas Instruments
TMS320VC5502ZZZ300
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-BGA MICROSTAR (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320F28375SPZPQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
Automotive
AEC-Q100
82K x 16
Texas Instruments
TMS320BC51PQA80
80 MHz
85 °C
-40 °C
5 V
5 V
4 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
16 kB
24.13
24.13
Texas Instruments
TMS320VC5416GWS160
The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
2 Mbit
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28332PTPQ
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 176-HLQFP (24x24)
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320VC5420ZGU200
100 MHz
100 °C
0 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C5533AZHH10
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
128 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320F2812PGFS
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28035PAGS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6474FCUN2
The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform.
1.2 GHz
95 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FC/CSP (23x23)
Surface Mount
561-BFBGA, FCCSPBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320C6727BZDH350
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
350 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C6411AZLZ
300 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320VC5410GGW100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
128 kB
ROM
Fixed Point
176-BGA MICROSTAR (15x15)
Surface Mount
176-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM368ZCED48F
Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
432 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320F2808NMFA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5506ZAYR
The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5506 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5506 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The 5506 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5506 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™, XDS560™, emulation device drivers, and evaluation modules. The 5506 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
Texas Instruments
TMS320F28033RSHS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
64 KB
32-Bit Single-Core
FLASH
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
12 b
Texas Instruments
TMS320DM641GNZ600
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320C6748EZWTA3E
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320LC549PGE-80
80 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
32 kB
Texas Instruments
TMS320F28022PTQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
50 MHz
1.71 V
1.995 V
C28x
13
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F28332ZJZS
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 176-BGA (15x15)
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6205DGWT200
The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320C6205GHKA200
The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
105 °C
-40 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-BGA Microstar (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320C6415TBZLZA8
850 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28235ZJZA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320DM6446AZWTA
The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320DM6467CZUT
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320F28016PZS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM335CZCE216
216 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320C6204GHK200
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-BGA Microstar (16x16)
Surface Mount
288-LFBGA
McBSP
Texas Instruments
TMS320C6455BCTZ
90 °C
0 °C
1.8 V, 3.3 V
1.25 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320F28PLC93PNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
3.63 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
4
I2C, McBSP, SCI, SPI, UART/USART
Texas Instruments
TMS320C6742BZWT2
200 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Host Interface, I2C, McASP, McBSP, SPI, UART
1.088 MB
Texas Instruments
TMS320F28067UPZPS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 100-HTQFP (14x14)
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
USB
Texas Instruments
TMS320VC5510AGGW2
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
200 MHz
85 °C
0 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320LF2401AVFA
The TMS320Lx2401Adevice, a new member of the TMS320C24x™ generation of digital signal processor (DSP) controllers, is part of the TMS320C2000™ platform of fixed-point DSPs. The Lx2401A device offers the enhanced TMS320™ DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing 240x and C24x™ DSP controller devices, the Lx2401A offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The Lx2401A device offers a peripheral suite tailored to meet the specific price/performance points required by various applications. The Lx2401A also offers a cost-effective reprogrammable solution for volume production. A password-based "code security" feature on the device is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that the LF2401A contains a 256-word boot ROM to facilitate in-circuit programming. The boot ROM on LC2401A is used for test purposes. The Lx2401A offers an event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and offers up to 5 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™ debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. NOTE:The Lx2401A device has reduced peripheral functionality compared to other 24x/240x devices. While peripherals such as SPI and CAN are absent on the Lx2401A, peripherals such as EV and ADC have reduced functionality. For example, in the case of EV, there is no QEP unit and the Capture unit has only one capture pin (as opposed to three or six pins in other devices). The ADC has only five input channels (as opposed to eight or sixteen channels in other devices). For these reasons, some bits that are valid in other 24x/240x devices are not applicable in the Lx2401A. The registers and their valid bits are described in Table 16, Lx2401A DSP Peripheral Register Description. For a description of those registers and bits that are valid, refer to theTMS320LF/LC240xA DSP Controllers Reference Guide: System and Peripherals(literature number SPRU357). Any exceptions to SPRU357 has been described in the respective peripheral sections in this data sheet. The TMS320Lx2401Adevice, a new member of the TMS320C24x™ generation of digital signal processor (DSP) controllers, is part of the TMS320C2000™ platform of fixed-point DSPs. The Lx2401A device offers the enhanced TMS320™ DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing 240x and C24x™ DSP controller devices, the Lx2401A offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The Lx2401A device offers a peripheral suite tailored to meet the specific price/performance points required by various applications. The Lx2401A also offers a cost-effective reprogrammable solution for volume production. A password-based "code security" feature on the device is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that the LF2401A contains a 256-word boot ROM to facilitate in-circuit programming. The boot ROM on LC2401A is used for test purposes. The Lx2401A offers an event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and offers up to 5 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™ debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. NOTE:The Lx2401A device has reduced peripheral functionality compared to other 24x/240x devices. While peripherals such as SPI and CAN are absent on the Lx2401A, peripherals such as EV and ADC have reduced functionality. For example, in the case of EV, there is no QEP unit and the Capture unit has only one capture pin (as opposed to three or six pins in other devices). The ADC has only five input channels (as opposed to eight or sixteen channels in other devices). For these reasons, some bits that are valid in other 24x/240x devices are not applicable in the Lx2401A. The registers and their valid bits are described in Table 16, Lx2401A DSP Peripheral Register Description. For a description of those registers and bits that are valid, refer to theTMS320LF/LC240xA DSP Controllers Reference Guide: System and Peripherals(literature number SPRU357). Any exceptions to SPRU357 has been described in the respective peripheral sections in this data sheet.
85 °C
-40 °C
32-LQFP (7x7)
Surface Mount
32-LQFP
16 KB
16-Bit
FLASH
2 K
Internal
13
40 MHz
POR, PWM, WDT
C2xx DSP
10 b
SCI
5
Texas Instruments
TMS320F28PLC83PNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
3.63 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
4
I2C, McBSP, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5510AZAVD2
200 MHz
85 °C
0 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C30GEL
85 °C
0 °C
5 V
5 V
8.25 kB
Floating Point
181-CPGA (39x39)
Through Hole
181-BCPGA Exposed Pad
Serial Port
16 kB
Texas Instruments
TMS320F28026FPTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320DM6467CCUTV
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
85 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320F28032PAGS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F2806GGMS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 64KB (32K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320DM642AGNZA6
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
600 MHz
105 °C
-40 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320C5505AZCHA10
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320DM6435ZDUQ5
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM8148BCYE1
1 GHz, 700 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F28068FPFPQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-HTQFP (12x12)
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320F28035PNQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28027DAS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5410AGWS12
The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
-40 °C
3.3 V
1.6 V
128 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C209PN57
57 MHz
70 °C
0 °C
5 V
5 V
8 kB
Fixed Point
Surface Mount
80-LQFP
SSP, UART
64 kB
Texas Instruments
TMS320C6747BZKBA3
375 MHz
105 °C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28052MPNT
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C30GEL40
40 MHz
85 °C
0 °C
5 V
5 V
8.25 kB
Floating Point
181-CPGA (39x39)
Through Hole
181-BCPGA Exposed Pad
Serial Port
16 kB
Texas Instruments
TMS320VC5471GHK
100 MHz
85 °C
0 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320F2812GBBAR
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
85 °C
-40 °C
3.3 V
1.9 V
36 kB
FLASH
Floating Point
179-NFBGA (12x12)
Surface Mount
CAN, EBI/EMI, McBSP, SCI, SPI, UART
256 kB
Automotive
AEC-Q100
Texas Instruments
TMS320VC5402PGE100
The TMS320VC5402 fixed-point, digital signal processor (DSP) (hereafter referred to as the '5402 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the '5402 includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5402 fixed-point, digital signal processor (DSP) (hereafter referred to as the '5402 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the '5402 includes the control mechanisms to manage interrupts, repeated operations, and function calls.
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
Texas Instruments
TMS320F28030RSHS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320DM6435ZDUQ6
600 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320VC5502GBE300
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-NFBGA (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320F28032PNQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28232ZJZQ
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 176-BGA (15x15)
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C28346ZFEQ
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
300 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
516 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Automotive
AEC-Q100
Texas Instruments
TMS320VC5502GZZ300
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-BGA MICROSTAR (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320F28050PNS
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6472ECTZ7
700 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.1 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320C6424ZWT5
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6416TBCLZ1
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28052PNQ
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320DM355DZCE135
135 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320F2806ZGMS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 64KB (32K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6748BZWT3
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6416TBZLZ7
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6457CCMHA2
The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
1.2 GHz
95 °C
-40 °C
1.1 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
Fixed Point
688-FCBGA (23x23)
Surface Mount
688-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6748BZCE3
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C82GGP60
60 MHz
85 °C
0 °C
3.3 V
3.3 V
84 kB
External
Floating Point
352-BGA (35x35)
Surface Mount
352-LBGA
Parallel
Texas Instruments
TMS320F28375SZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
32-Bit Single-Core
FLASH
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
Texas Instruments
TMS320F28069PZPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6713BZDP300
The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel. The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel.
300 MHz
90 °C
0 °C
3.3 V
1.4 V
264 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
27
27
Texas Instruments
TMS320C5545AZQW10R
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
118-BGA MICROSTAR JUNIOR (7x7)
Surface Mount
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C6748BZCEA3
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM642AZDKA5
500 MHz
105 °C
-40 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320LF2406APZS
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
16-Bit
FLASH
Internal
41
40 MHz
POR, PWM, WDT
C2xx DSP
CANbus, SCI, SPI, UART/USART
5K x 8
A/D 16x10b
Texas Instruments
TMS320C6424ZWT4
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6678ACYP25
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.25 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320F2811PBKQ
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
256 KB
CANbus, McBSP, SCI, SPI, UART/USART
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320DM6435ZWTL
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320LF2406APZAG4
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 40MHz 64KB (32K x 16) FLASH 100-LQFP (14x14)
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
16-Bit
FLASH
Internal
41
40 MHz
POR, PWM, WDT
C2xx DSP
CANbus, SCI, SPI, UART/USART
5K x 8
A/D 16x10b
Texas Instruments
TMS320DM8148CCYEA0
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
105 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320VC5409AGWS12
The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts, The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts,
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
64 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C542PGE1-40
40 MHz
100 °C
-40 °C
5 V
5 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320C6474FGUNA
100 °C
-40 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320VC5501ZZZ300
The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
48 kB
ROM
Fixed Point
201-BGA MICROSTAR (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320C5505AZCHA12
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
120 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320C25PHL
50 MHz
70 °C
0 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
80-QFP (14x20)
Surface Mount
80-BQFP
Serial Port
Texas Instruments
TMS320VC5402APGE16
The TMS320VC5402A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5402A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5402A also includes the control mechanisms to manage interrupts, The TMS320VC5402A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5402A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5402A also includes the control mechanisms to manage interrupts,
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
32 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28069UPNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320DM6467TCUTL1
The TMS320DM6467T (also referenced as DM6467T) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6467T enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467T provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units— two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467T also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467T core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 66-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467T and the network. The DM6467T EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467T to easily control peripheral devices and/or communicate with host processors. The DM6467T also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467T has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320DM6467T (also referenced as DM6467T) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6467T enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467T provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units— two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467T also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467T core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 66-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467T and the network. The DM6467T EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467T to easily control peripheral devices and/or communicate with host processors. The DM6467T also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467T has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
1 GHz, 500 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C50PGE57
57 MHz
70 °C
0 °C
5 V
5 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Serial Port
Texas Instruments
TMS320F28022DAT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28032PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6410GTS400
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320C6711DGDP200
The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.26 V
72 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320F28016PZA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6711BGFN100
100 MHz
90 °C
0 °C
3.3 V
1.8 V
72 kB
External
Floating Point
256-BGA
Surface Mount
256-BGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320DM6431ZWTQ3
The TMS320C64x+™ DSPs (including the TMS320DM6431 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6431 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 2400 million instructions per second (MIPS) at a clock rate of 300 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1200 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 2400 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6431 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6431 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of 32K-byte (KB) memory space that can be configured as mapped memory or direct mapped cache. The Level 1 data/memory memory/cache (L1D) consists of a 64KB memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 64KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6431 device includes a Video Processing Subsystem (VPSS) with a Video Processing Front-End (VPFE) input used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC). The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6431 and the network. The DM6431 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C port allows DM6431 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6431 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6431 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6431 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 2400 million instructions per second (MIPS) at a clock rate of 300 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1200 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 2400 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6431 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6431 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of 32K-byte (KB) memory space that can be configured as mapped memory or direct mapped cache. The Level 1 data/memory memory/cache (L1D) consists of a 64KB memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 64KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6431 device includes a Video Processing Subsystem (VPSS) with a Video Processing Front-End (VPFE) input used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC). The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6431 and the network. The DM6431 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C port allows DM6431 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6431 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
300 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.2 V
128 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6204ZHK200
The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
McBSP
Texas Instruments
TMS320F241PGA
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 64-QFP (14x20)
85 °C
-40 °C
64-QFP (14x20)
Surface Mount
64-BQFP
16 KB
16-Bit
FLASH
Internal
26
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
8
CANbus, SCI, SPI, UART/USART
1K x 8
10 b
Texas Instruments
TMS320C6421ZDUQ6
600 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F240PQG4
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 32KB (16K x 16) FLASH 132-BQFP (24.13x24.13)
70 °C
0 °C
132-BQFP
Surface Mount
132-BQFP Bumpered
32 KB
16-Bit
FLASH
Internal
28
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
24.13
24.13
EBI/EMI, SCI, SPI, UART/USART
1K x 8
A/D 16x10b
Texas Instruments
TMS320C6742BZCE2
200 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Host Interface, I2C, McASP, McBSP, SPI, UART
1.088 MB
Texas Instruments
TMS320F28069PZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320F2808ZGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6745CPTPD4
456 MHz
90 °C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM642AZDK7HK
720 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320F28377SPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
32-Bit Single-Core
FLASH
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320C6412AGDK5
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320DSP105APGE16
Texas Instruments
TMS320DM648CUT9
The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
900 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320LBC56PZ57
57 MHz
70 °C
0 °C
3.3 V
3.3 V
14 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP
64 kB
Texas Instruments
TMS320C6410ZTS400
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320C6746BZCEA3
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320VC5410AZWS12
The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
-40 °C
3.3 V
1.6 V
128 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM6467TZUTD1
1 GHz, 500 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.3 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320VC5409PGE100
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28068FPZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320C6722BRFP200
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
200 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
Floating Point
144-HTQFP (20x20)
Surface Mount
144-TQFP Exposed Pad
EBI/EMI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C6748EZWT4
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F2812GHHA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6418GTSA500
The TMS320C64x™ DSPs (including the TMS320C6418 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6418 (C6418) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI). The high-performance, lower-cost C6418 DSP enables customers to reduce system costs for telecom, software radio, Digital Terrestrial Television Broadcasting (DTTB), and digital Broadcast Satellite/Communication Satellite (BS/CS) applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6418 device offers cost-effective solutions to high-performance DSP programming challenges. The C6418 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6418 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6418 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6418 device has a high-performance embedded coprocessor [Viterbi Decoder Coprocessor (VCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the EDMA controller. The C6418 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 4-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache (up to 256K bytes), or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6418 has sufficient bandwidth to support all six serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6418 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6418 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6418 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6418 (C6418) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI). The high-performance, lower-cost C6418 DSP enables customers to reduce system costs for telecom, software radio, Digital Terrestrial Television Broadcasting (DTTB), and digital Broadcast Satellite/Communication Satellite (BS/CS) applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6418 device offers cost-effective solutions to high-performance DSP programming challenges. The C6418 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6418 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6418 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6418 device has a high-performance embedded coprocessor [Viterbi Decoder Coprocessor (VCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the EDMA controller. The C6418 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 4-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache (up to 256K bytes), or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6418 has sufficient bandwidth to support all six serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6418 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6418 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
105 °C
-40 °C
3.3 V
1.4 V
544 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320F28021PTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
5 K
Internal
22
40 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320C6748AZCE3
300 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM8168BCYG2
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320C203PZ
The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088). The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088).
40 MHz
70 °C
0 °C
5 V
5 V
1 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
Texas Instruments
TMS320F280220DAS
The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
16 KB
32-Bit Single-Core
FLASH
3 K
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
6
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C31PQL60
60 MHz
85 °C
0 °C
5 V
5 V
8.25 kB
External
Floating Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320VC5410PGE100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
128 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28027PTQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320DM8127SCYED0
TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip
90 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320LBC51PQA57
57 MHz
85 °C
-40 °C
3.3 V
3.3 V
4 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
16 kB
24.13
24.13
Texas Instruments
TMS320F28334ZHHA
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320F28332ZJZA
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 176-BGA (15x15)
85 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320LF2402APGAR
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
85 °C
-40 °C
64-QFP (14x20)
Surface Mount
64-BQFP
16 KB
16-Bit
FLASH
2 K
Internal
21
40 MHz
POR, PWM, WDT
C2xx DSP
8
SCI
10 b
Texas Instruments
TMS320F28015ZGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 60MHz 32KB (16K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM647CUT9
The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
900 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
320 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320F28015PZA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5510AZGWA1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
-40 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28035PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28015PZQ
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 60MHz 32KB (16K x 16) FLASH 100-LQFP (14x14)
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6745BPTP4
456 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6412GNZ600
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320F28076PZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
41
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
Texas Instruments
TMS320C25FNA50
50 MHz
70 °C
0 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
68-PLCC
Surface Mount
68-LCC (J-Lead)
Serial Port
24.23
24.23
Texas Instruments
TMS320DM642AGNZ7
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
720 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320C203PZ80
The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088). The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088).
80 MHz
70 °C
0 °C
5 V
5 V
1 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
Texas Instruments
TMS320F28026PTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320C6424ZWTQ5
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6418ZTSA500
The TMS320C64x™ DSPs (including the TMS320C6418 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6418 (C6418) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI). The high-performance, lower-cost C6418 DSP enables customers to reduce system costs for telecom, software radio, Digital Terrestrial Television Broadcasting (DTTB), and digital Broadcast Satellite/Communication Satellite (BS/CS) applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6418 device offers cost-effective solutions to high-performance DSP programming challenges. The C6418 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6418 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6418 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6418 device has a high-performance embedded coprocessor [Viterbi Decoder Coprocessor (VCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the EDMA controller. The C6418 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 4-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache (up to 256K bytes), or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6418 has sufficient bandwidth to support all six serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6418 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6418 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6418 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6418 (C6418) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI). The high-performance, lower-cost C6418 DSP enables customers to reduce system costs for telecom, software radio, Digital Terrestrial Television Broadcasting (DTTB), and digital Broadcast Satellite/Communication Satellite (BS/CS) applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6418 device offers cost-effective solutions to high-performance DSP programming challenges. The C6418 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6418 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6418 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6418 device has a high-performance embedded coprocessor [Viterbi Decoder Coprocessor (VCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the EDMA controller. The C6418 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 4-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache (up to 256K bytes), or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6418 has sufficient bandwidth to support all six serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6418 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6418 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
105 °C
-40 °C
3.3 V
1.2 V
544 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320DM6435ZWT5
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320LC542PGE1-40
40 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320C5533AZHHA05
50 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
128 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320C6416TBZLZD1
90 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28235ZJZQR
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320VC5504ZCH
100 MHz
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
I2C, I2S, SPI, UART, USB
128 kB
Texas Instruments
TMS320C32PCM60
60 MHz
85 °C
0 °C
5 V
5 V
2.25 kB
External
Floating Point
144-QFP (28x28)
Surface Mount
144-BQFP
Serial Port
Texas Instruments
TMS320DM8148SCYE2
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
1 GHz, 700 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320DM6437ZWT4
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6412AZDK5
500 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320C6205GWTA200
The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
105 °C
-40 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320F28026DAS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C28341ZFET
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
196 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320C6416TBCLZA7
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
720 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F2808PZAR
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28052FPNT
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM648ZUTD9
900 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320C6748EZWTA3
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28075PTPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
97
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
A/D 17x12b, D/A 3x12b
Texas Instruments
TMS320F28069PZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320C6701GJCA120
The TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000™ DSP platform. The TMS320C6701 (C6701) device is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. With performance of up to 1 giga floating-point operations per second (GFLOPS) at a clock rate of 167 MHz, the C6701 offers cost-effective solutions to high-performance DSP programming challenges. The C6701 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6701 can produce two multiply-accumulates (MACs) per cycle for a total of 334 million MACs per second (MMACS). The C6701 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6701 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000™ DSP platform. The TMS320C6701 (C6701) device is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. With performance of up to 1 giga floating-point operations per second (GFLOPS) at a clock rate of 167 MHz, the C6701 offers cost-effective solutions to high-performance DSP programming challenges. The C6701 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6701 can produce two multiply-accumulates (MACs) per cycle for a total of 334 million MACs per second (MMACS). The C6701 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6701 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
120 MHz
105 °C
-40 °C
3.3 V
1.8 V
128 kB
External
Floating Point
352-FCBGA (35x35)
Surface Mount
352-BBGA, FCBGA
Host Interface, McBSP
Texas Instruments
TMS320F28068MPNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320LC549PGE-66
66 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
32 kB
Texas Instruments
TMS320F2802ZGMS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 64KB (32K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM8167SCYG2
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320DM641AZNZ6
The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320C5517AZCHA20
This device is a member of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and is designed for low active and standby power consumption. The device is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16 independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The GPIO functions along with the 10-bit SAR ADC to provide sufficient pins for status, interrupts, and bit I/O for keyboards, and media interfaces. Serial media is supported through two multimedia card and secure digital (MMC and SD) peripherals, three Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one master and slave multichannel serial port interface (McSPI) with up to three chip selects, one multichannel serial port (McBSP), one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories, such as EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include a configurable 16-bit universal host-port interface (UHPI), a high-speed universal serial bus (USB2.0) device mode only, a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device also includes a tightly coupled FFT hardware accelerate that supports 8- to 1024-point (by power of 2) real- and complex-valued FFTs and three integrated LDOs to power different sections of the device, except CVDDRTCwhich requires an external power source: ANA_LDO to provide 1.3 V to the SAR and power-management circuits (VDDA_ANA), DSP_LDO to provide 1.3 or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed, and USB_LDO to provide 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The device is supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and a large third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. This device is a member of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and is designed for low active and standby power consumption. The device is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16 independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The GPIO functions along with the 10-bit SAR ADC to provide sufficient pins for status, interrupts, and bit I/O for keyboards, and media interfaces. Serial media is supported through two multimedia card and secure digital (MMC and SD) peripherals, three Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one master and slave multichannel serial port interface (McSPI) with up to three chip selects, one multichannel serial port (McBSP), one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories, such as EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include a configurable 16-bit universal host-port interface (UHPI), a high-speed universal serial bus (USB2.0) device mode only, a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device also includes a tightly coupled FFT hardware accelerate that supports 8- to 1024-point (by power of 2) real- and complex-valued FFTs and three integrated LDOs to power different sections of the device, except CVDDRTCwhich requires an external power source: ANA_LDO to provide 1.3 V to the SAR and power-management circuits (VDDA_ANA), DSP_LDO to provide 1.3 or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed, and USB_LDO to provide 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The device is supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and a large third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
200 MHz
85 °C
-40 °C
1.8 V, 2.75 V, 3.3 V
1.05 V, 1.3 V, 1.4 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, McBSP, McSPI, MMC/SD, SPI, UART/USART, UHPI, USB
128 kB
Texas Instruments
TMS320C30GEL50
50 MHz
85 °C
0 °C
5 V
5 V
8.25 kB
Floating Point
181-CPGA (39x39)
Through Hole
181-BCPGA Exposed Pad
Serial Port
16 kB
Texas Instruments
TMS320VC5410AZGU16
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
128 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320R2812GHHS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz ROMless 179-BGA MicroStar (12x12)
125 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320DM6437ZDUQ4
400 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6412AZDKA5
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
105 °C
-40 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320DM6443ZWT
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320DM6467CCUT4
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320DM641AGNZ5
500 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320C54V90BGGU
117 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
256 kB
Texas Instruments
TMS320DM6431ZDU3
300 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
128 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28051PNS
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM357ZWT
The TMS320DM357 (also referenced as DM357) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM357 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The DM357 performance is enhanced by its H.264/MPEG4/JPEG coprocessor (HMJCP). The HMJCP performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The H.264/MPEG4/JPEG coprocessor supports MPEG4 Simple Profile (SP) , D1, VGA, SIF encode/decode resolutions and JPEG encode/decode. The peripheral set includes: 2 configurable video ports (one input port and one output port); a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM357 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, and 1 Video Processing Back-End (VPBE) output for displaying video images. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM357. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides three analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices or hi-speed triple DACs such as the THS8200. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM357 and the network. The DM357 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a Ethernet PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, and USB2.0 OTG ports allow DM357 to easily control peripheral devices and/or communicate with host processors. The DM357 also provides multimedia card support, MMC/SD, with SDIO support. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM357 has a complete set of development tools for the ARM926EJS. These include C compilers and a Windows™ debugger interface for visibility into source code execution. The TMS320DM357 (also referenced as DM357) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM357 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The DM357 performance is enhanced by its H.264/MPEG4/JPEG coprocessor (HMJCP). The HMJCP performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The H.264/MPEG4/JPEG coprocessor supports MPEG4 Simple Profile (SP) , D1, VGA, SIF encode/decode resolutions and JPEG encode/decode. The peripheral set includes: 2 configurable video ports (one input port and one output port); a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM357 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, and 1 Video Processing Back-End (VPBE) output for displaying video images. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM357. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides three analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices or hi-speed triple DACs such as the THS8200. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM357 and the network. The DM357 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a Ethernet PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, and USB2.0 OTG ports allow DM357 to easily control peripheral devices and/or communicate with host processors. The DM357 also provides multimedia card support, MMC/SD, with SDIO support. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM357 has a complete set of development tools for the ARM926EJS. These include C compilers and a Windows™ debugger interface for visibility into source code execution.
270 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
40 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320C54V90GGU
117 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
256 kB
Texas Instruments
TMS320BC57SPGE57
57 MHz
70 °C
0 °C
5 V
5 V
14 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, SSP
Texas Instruments
TMS320C6454BZTZ7
720 MHz
90 °C
0 °C
1.2 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320C6416TBGLZ1
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6748AZWT3
300 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM8148BCYE2
1 GHz, 700 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320C54V90PGE
117 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
256 kB
Texas Instruments
TMS320LC203PZA
The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088). The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088).
40 MHz
85 °C
-40 °C
3.3 V
3.3 V
1 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
Texas Instruments
TMS320DM6437ZDU7
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320VC5420PGE200
100 MHz
100 °C
0 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
Texas Instruments
TMS320F28068PZT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 100-LQFP (14x14)
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320F28377DZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320F28075PTPQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
97
120 MHz
1.14 V
1.26 V
DMA, POR, PWM, WDT
C28x
1, 17
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
12 b, 12 b
Texas Instruments
TMS320F28064PNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320C6745BPTPD4
456 MHz
90 °C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6474FZUN8
850 MHz
100 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA, FCBGA Exposed Pad
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320F28378SPZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
82K x 16
A/D 14x12b, A/D 14x16b, D/A 3x12b
Texas Instruments
TMS320F240PQS
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 32KB (16K x 16) FLASH 132-BQFP (24.13x24.13)
125 °C
-40 °C
132-BQFP
Surface Mount
132-BQFP Bumpered
32 KB
16-Bit
FLASH
Internal
28
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
24.13
24.13
EBI/EMI, SCI, SPI, UART/USART
1K x 8
A/D 16x10b
Texas Instruments
TMS320VC5410AGWS16
The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
128 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM641AGNZ6
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320F28375SPZPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
Automotive
AEC-Q100
82K x 16
Texas Instruments
TMS320F2801PZA-60
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM8168SCYG4
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320VC5509APGE
The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037). The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037).
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320F2801PZA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5510AGGWA2
200 MHz
85 °C
-40 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6670AXCYPA2
The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.2 GHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320C6412GDK600
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320F28031PAGS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320DM642GNZ600
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320DM8168BCYG0
667 MHz, 720 MHz
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320DM6435ZWTQ6
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28053PNS
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5510AGBCA2
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
200 MHz
85 °C
-40 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320LC546APZ-66
Texas Instruments
TMS320F28374SPZPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
66 K
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
Texas Instruments
TMS320C6204GWTA200
The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
105 °C
-40 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320DM369ZCEF
Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a
432 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C6674ACYPA
The TMS320C6674 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6674 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6674 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6674 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320DM6467ZUTA
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320DM6433ZWTL
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6424ZDUQ5
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320LC206PZA80
The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages: The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages:
80 MHz
85 °C
-40 °C
3.3 V
3.3 V
9 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
64 kB
Texas Instruments
TMS320DM8127BCYE0
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F241FN
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 68-PLCC (24.23x24.23)
70 °C
0 °C
68-PLCC
Surface Mount
68-LCC (J-Lead)
16 KB
16-Bit
FLASH
Internal
26
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
24.23
24.23
8
CANbus, SCI, SPI, UART/USART
1K x 8
10 b
Texas Instruments
TMS320C6457CCMH
The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
100 °C
0 °C
1.1 V, 1.8 V, 3.3 V
1.1 V
2.1 MB
Fixed Point
688-FCBGA (23x23)
Surface Mount
688-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6743BPTP3
375 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320F28377SZWTQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
32-Bit Single-Core
FLASH
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
12x16b, A/D 24x12b, D/A 3x12b
Texas Instruments
TMS320DM648CUT7
The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
720 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320DM335ZCE270
270 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320C6472EZTZ7
700 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320DM8127BCYE2
600 MHz, 1000 GHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320DM6467CCUT
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320VC5401GGU50
50 MHz
100 °C
-40 °C
3.3 V
1.8 V
16 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C5515AZCHA10
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320C6748BZCG4
456 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320VC5407ZGU
120 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP, UART
256 kB
Texas Instruments
TMS320C6414TBGLZ8
850 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6655CZH25
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
1.25 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320F28033PAGT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28034PAGQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320LBC53SPZA57
The TMS320C5x generation of the Texas Instruments (TI™) TMS320 digital signal processors (DSPs) is fabricated with static CMOS integrated circuit technology; the architectural design is based upon that of an earlier TI DSP, the TMS320C25. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C5xdevices. They execute up to 50 million instructions per second (MIPS). The 'C5x devices offer these advantages: Table 1 provides a comparison of the devices in the 'C5x generation. It shows the capacity of on-chip RAM and ROM memories, number of serial and parallel I/O ports, execution time of one machine cycle, and type of package with total pin count. The TMS320C5x generation of the Texas Instruments (TI™) TMS320 digital signal processors (DSPs) is fabricated with static CMOS integrated circuit technology; the architectural design is based upon that of an earlier TI DSP, the TMS320C25. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C5xdevices. They execute up to 50 million instructions per second (MIPS). The 'C5x devices offer these advantages: Table 1 provides a comparison of the devices in the 'C5x generation. It shows the capacity of on-chip RAM and ROM memories, number of serial and parallel I/O ports, execution time of one machine cycle, and type of package with total pin count.
57 MHz
85 °C
-40 °C
3.3 V
3.3 V
8 kB
ROM
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP, TDM
32 kB
Texas Instruments
TMS320C6416TBGLZA6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6672ACYPA25
The TMS320C6672 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with two C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 2.5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6672 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6672 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with two C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 2.5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6672 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.25 GHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
5.125 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320F28067PFPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320DM647ZUT9
900 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
320 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320C6421ZWT7
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F280220PTT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 40MHz 16KB (8K x 16) FLASH 48-LQFP (7x7)
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
16 KB
32-Bit Single-Core
FLASH
3 K
Internal
22
40 MHz
1.71 V
1.995 V
C28x
I2C, SCI, SPI, UART/USART
A/D 8x12b
Texas Instruments
TMS320DM8127SCYE1
TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320DM648CUTA8
The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
800 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320DM8165SCYG
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320DM355ZCEA216
216 MHz
100 °C
-40 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320C6474FGUN
100 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320C6416TBCLZA6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28069MPZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320C6416TBZLZA7
720 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28379SPZPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
82K x 16
A/D 14x12b, A/D 14x16b, D/A 3x12b
Texas Instruments
TMS320C6748EZCED4E
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6454BCTZ8
850 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320F28066PZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320VC5470GHKA
100 MHz
85 °C
-40 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320DM335DZCE216
216 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320C6711GFN150
90 °C
0 °C
3.3 V
1.9 V
72 kB
External
Floating Point
256-BGA
Surface Mount
256-BGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320C6474FCUN8
The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform.
850 MHz
100 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FC/CSP (23x23)
Surface Mount
561-BFBGA, FCCSPBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320VC5441ZGUR
133 MHz
85 °C
0 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
169-BGA MicroStar
Surface Mount
169-LFBGA
Host Interface, McBSP
12
12
Texas Instruments
TMS320F28374SZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
Texas Instruments
TMS320LF2401AVFAR
The TMS320Lx2401Adevice, a new member of the TMS320C24x™ generation of digital signal processor (DSP) controllers, is part of the TMS320C2000™ platform of fixed-point DSPs. The Lx2401A device offers the enhanced TMS320™ DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing 240x and C24x™ DSP controller devices, the Lx2401A offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The Lx2401A device offers a peripheral suite tailored to meet the specific price/performance points required by various applications. The Lx2401A also offers a cost-effective reprogrammable solution for volume production. A password-based "code security" feature on the device is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that the LF2401A contains a 256-word boot ROM to facilitate in-circuit programming. The boot ROM on LC2401A is used for test purposes. The Lx2401A offers an event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and offers up to 5 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™ debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. NOTE:The Lx2401A device has reduced peripheral functionality compared to other 24x/240x devices. While peripherals such as SPI and CAN are absent on the Lx2401A, peripherals such as EV and ADC have reduced functionality. For example, in the case of EV, there is no QEP unit and the Capture unit has only one capture pin (as opposed to three or six pins in other devices). The ADC has only five input channels (as opposed to eight or sixteen channels in other devices). For these reasons, some bits that are valid in other 24x/240x devices are not applicable in the Lx2401A. The registers and their valid bits are described in Table 16, Lx2401A DSP Peripheral Register Description. For a description of those registers and bits that are valid, refer to theTMS320LF/LC240xA DSP Controllers Reference Guide: System and Peripherals(literature number SPRU357). Any exceptions to SPRU357 has been described in the respective peripheral sections in this data sheet. The TMS320Lx2401Adevice, a new member of the TMS320C24x™ generation of digital signal processor (DSP) controllers, is part of the TMS320C2000™ platform of fixed-point DSPs. The Lx2401A device offers the enhanced TMS320™ DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing 240x and C24x™ DSP controller devices, the Lx2401A offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The Lx2401A device offers a peripheral suite tailored to meet the specific price/performance points required by various applications. The Lx2401A also offers a cost-effective reprogrammable solution for volume production. A password-based "code security" feature on the device is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that the LF2401A contains a 256-word boot ROM to facilitate in-circuit programming. The boot ROM on LC2401A is used for test purposes. The Lx2401A offers an event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and offers up to 5 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™ debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. NOTE:The Lx2401A device has reduced peripheral functionality compared to other 24x/240x devices. While peripherals such as SPI and CAN are absent on the Lx2401A, peripherals such as EV and ADC have reduced functionality. For example, in the case of EV, there is no QEP unit and the Capture unit has only one capture pin (as opposed to three or six pins in other devices). The ADC has only five input channels (as opposed to eight or sixteen channels in other devices). For these reasons, some bits that are valid in other 24x/240x devices are not applicable in the Lx2401A. The registers and their valid bits are described in Table 16, Lx2401A DSP Peripheral Register Description. For a description of those registers and bits that are valid, refer to theTMS320LF/LC240xA DSP Controllers Reference Guide: System and Peripherals(literature number SPRU357). Any exceptions to SPRU357 has been described in the respective peripheral sections in this data sheet.
85 °C
-40 °C
32-LQFP (7x7)
Surface Mount
32-LQFP
16 KB
16-Bit
FLASH
2 K
Internal
13
40 MHz
POR, PWM, WDT
C2xx DSP
10 b
SCI
5
Texas Instruments
TMS320C6415TZLZ7
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320VC5510AGBC2
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
200 MHz
85 °C
0 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6745BPTPT3
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6455BGTZ2
1.2 GHz
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320C10NL-25
25 MHz
70 °C
0 °C
5 V
5 V
288 B
ROM
Fixed Point
40-PDIP
Through Hole
40-DIP
Parallel
3 kB
0.6 in, 600 mil
Texas Instruments
TMS320C6424ZDUL
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28023DAS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28044PZA
The TMS320F28044 device, member of the TMS320C28x DSP generation, is a highly integrated, high-performance solution for demanding control applications. Throughout this document, TMS320F28044 is abbreviated as F28044. The TMS320F28044 device, member of the TMS320C28x DSP generation, is a highly integrated, high-performance solution for demanding control applications. Throughout this document, TMS320F28044 is abbreviated as F28044.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28335ZAYA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320DM6467CZUTD7
364.5 MHz, 729 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C6452ZUT9
900 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
1.375 MB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, UART
64 kB
Texas Instruments
TMS320C5514AZCH12
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL) and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL) and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries.
120 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320C5505AZCH12
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
120 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320F2802PZS-60
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320LBC57PGE57
57 MHz
70 °C
0 °C
3.3 V
3.3 V
14 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, SSP
64 kB
Texas Instruments
TMS320F28375DZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
Texas Instruments
TMS320C6747DZKBT3R
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6202BZNZ250
The TMS320C6202 and TMS320C6202B devices are part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6202/02B has a performance capability of up to 2400 million instructions per second (MIPS) at 300 MHz. The C6202/02B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. These processors have 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6202/02B can produce two multiply-accumulates (MACs) per cycle. This gives a total of 600 million MACs per second (MMACS) for the C6202/02B device. The C6202/02B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6202/02B devices program memory consists of two blocks, with a 128K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6202/02B consists of two 64K-byte blocks of RAM. The C6202/02B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6202 and TMS320C6202B devices are part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6202/02B has a performance capability of up to 2400 million instructions per second (MIPS) at 300 MHz. The C6202/02B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. These processors have 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6202/02B can produce two multiply-accumulates (MACs) per cycle. This gives a total of 600 million MACs per second (MMACS) for the C6202/02B device. The C6202/02B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6202/02B devices program memory consists of two blocks, with a 128K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6202/02B consists of two 64K-byte blocks of RAM. The C6202/02B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
250 MHz
90 °C
0 °C
3.3 V
1.5 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA
McBSP
Texas Instruments
TMS320DM8127SCYED2
TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip
600 MHz, 1000 GHz
90 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F28026DATR
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 32KB (16K x 16) FLASH 38-TSSOP
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5509AZHH
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C6746BZWTA3
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320C6678XCYPA
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320DM642AGDK5
500 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320F2812ZHHAR
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F206PZA
TMS320C20x Microcontroller IC 100-LQFP (14x14)
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
Texas Instruments
TMS320DM8147BCYE1
1 GHz, 700 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F28027PTQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F28377DGWTEP
The Delfino™ TMS320F28377D-EP is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial drives and servo motor control;solar inverters and converters;digital power;transportation; andpower line communications. Complete development packages for digital power and industrial drives are available as part of thepowerSUITEandDesignDRIVEinitiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the F28377D supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F28377D microcontroller features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F28377D-EP supports 1MB (512KW) of onboard flash memory with error correction code (ECC) and 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F28377D MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F28377D. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. The Delfino™ TMS320F28377D-EP is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial drives and servo motor control;solar inverters and converters;digital power;transportation; andpower line communications. Complete development packages for digital power and industrial drives are available as part of thepowerSUITEandDesignDRIVEinitiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the F28377D supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F28377D microcontroller features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F28377D-EP supports 1MB (512KW) of onboard flash memory with error correction code (ECC) and 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F28377D MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F28377D. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application.
125 °C
-55 C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320F28027DAT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5402GGU100
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6678ACYP4
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.4 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320VC549ZGU-120
120 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320C6421ZDU6
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6701GJC150
The TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000™ DSP platform. The TMS320C6701 (C6701) device is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. With performance of up to 1 giga floating-point operations per second (GFLOPS) at a clock rate of 167 MHz, the C6701 offers cost-effective solutions to high-performance DSP programming challenges. The C6701 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6701 can produce two multiply-accumulates (MACs) per cycle for a total of 334 million MACs per second (MMACS). The C6701 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6701 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000™ DSP platform. The TMS320C6701 (C6701) device is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. With performance of up to 1 giga floating-point operations per second (GFLOPS) at a clock rate of 167 MHz, the C6701 offers cost-effective solutions to high-performance DSP programming challenges. The C6701 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6701 can produce two multiply-accumulates (MACs) per cycle for a total of 334 million MACs per second (MMACS). The C6701 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6701 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
90 °C
0 °C
3.3 V
1.8 V
128 kB
External
Floating Point
352-FCBGA (35x35)
Surface Mount
352-BBGA, FCBGA
Host Interface, McBSP
Texas Instruments
TMS320F28062PZPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C32PCM40
40 MHz
85 °C
0 °C
5 V
5 V
2.25 kB
External
Floating Point
144-QFP (28x28)
Surface Mount
144-BQFP
Serial Port
Texas Instruments
TMS320DM8148SCYE0
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320C6720BRFP200
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
200 MHz
90 °C
0 °C
3.3 V
1.2 V
96 kB
Floating Point
144-HTQFP (20x20)
Surface Mount
144-TQFP Exposed Pad
EBI/EMI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C6421ZWT6
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320BC51PQA57
57 MHz
85 °C
-40 °C
5 V
5 V
4 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
16 kB
24.13
24.13
Texas Instruments
TMS320DM640AZDK4
The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320F2808GGMS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F2809GGMS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 256KB (128K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5507GHH
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
128 kB
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C6455DZTZ
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320C6747CZKB3
375 MHz
90 °C
0 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28374DPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
FLASH
86 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320F28069MPFPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320C6670CYPA2
The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.2 GHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320F2806NMFA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320DM6435EZWT6
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM6435ZDU6
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6203BGNY300
The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
300 MHz
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
384-FC/CSP (18x18)
Surface Mount
384-FBGA, FCCSPBGA
McBSP
Texas Instruments
TMS320F28377SPTPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
32-Bit Single-Core
FLASH
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320VC5409ZGU-80
80 MHz
100 °C
-40 °C
3.3 V
1.8 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F2808PZA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5407PGE
This data manual discusses features and specifications of the TMS320VC5407 and TMS320VC5404 (hereafter referred to as the 5407/5404 unless otherwise specified) digital signal processors (DSPs). The 5407 and 5404 are essentially the same device except for differences in their memory maps. This section lists the pin assignments and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging. NOTE: This data sheet is designed to be used in conjunction with theTMS320C5000 DSP Family Functional Overview(literature numberSPRU307). The 5407/5404 are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors provide an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of these DSPs is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. These DSPs also include the control mechanisms to manage interrupts, repeated operations, and function calls. This data manual discusses features and specifications of the TMS320VC5407 and TMS320VC5404 (hereafter referred to as the 5407/5404 unless otherwise specified) digital signal processors (DSPs). The 5407 and 5404 are essentially the same device except for differences in their memory maps. This section lists the pin assignments and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging. NOTE: This data sheet is designed to be used in conjunction with theTMS320C5000 DSP Family Functional Overview(literature numberSPRU307). The 5407/5404 are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors provide an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of these DSPs is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. These DSPs also include the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP, UART
256 kB
Texas Instruments
TMS320VC5402PGER10
The TMS320VC5402 fixed-point, digital signal processor (DSP) (hereafter referred to as the '5402 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the '5402 includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5402 fixed-point, digital signal processor (DSP) (hereafter referred to as the '5402 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the '5402 includes the control mechanisms to manage interrupts, repeated operations, and function calls.
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
Texas Instruments
TMS320R2812PGFA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz ROMless 176-LQFP (24x24)
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320F28068MPZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320VC5507GBB
The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.6 V
128 kB
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320F280200PTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
16 KB
32-Bit Single-Core
FLASH
2 K
Internal
22
40 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F28035PNS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C5504AZCH15
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries.
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.4 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320C6742BZWTA2
200 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Host Interface, I2C, McASP, McBSP, SPI, UART
1.088 MB
Texas Instruments
TMS320F28379DPTPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320C54CSTZWS
120 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP, UART
256 kB
Texas Instruments
TMS320C6414TBGLZA6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320VC549ZGU-100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320F28377DPTPEP
The Delfino™ TMS320F28377D-EP is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial drives and servo motor control;solar inverters and converters;digital power;transportation; andpower line communications. Complete development packages for digital power and industrial drives are available as part of thepowerSUITEandDesignDRIVEinitiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the F28377D supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F28377D microcontroller features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F28377D-EP supports 1MB (512KW) of onboard flash memory with error correction code (ECC) and 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F28377D MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F28377D. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. The Delfino™ TMS320F28377D-EP is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial drives and servo motor control;solar inverters and converters;digital power;transportation; andpower line communications. Complete development packages for digital power and industrial drives are available as part of thepowerSUITEandDesignDRIVEinitiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the F28377D supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F28377D microcontroller features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F28377D-EP supports 1MB (512KW) of onboard flash memory with error correction code (ECC) and 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F28377D MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F28377D. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application.
125 °C
-55 C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320F28235ZHHA
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 150MHz 512KB (256K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320F28379DZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320DM6433ZDU6
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320DM368ZCE48
Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
432 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C25FNL
This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design. This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design.
50 MHz
70 °C
0 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
68-PLCC
Surface Mount
68-LCC (J-Lead)
Serial Port
24.23
24.23
Texas Instruments
TMS320F28067PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320F241FNS
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 68-PLCC (24.23x24.23)
125 °C
-40 °C
68-PLCC
Surface Mount
68-LCC (J-Lead)
16 KB
16-Bit
FLASH
Internal
26
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
24.23
24.23
8
CANbus, SCI, SPI, UART/USART
1K x 8
10 b
Texas Instruments
TMS320F2812GHHAR
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28055PNT
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6678CYPA
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320C6454BCTZ7
720 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320F2812GBBA
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
85 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28062FPNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320C5532AZHH05
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
64 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320C6743BZKB3
375 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320C6713BPYP200
The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel. The TMS320C67x™ DSPs (including the TMS320C6713B device) compose the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713B device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Operating at 225 MHz, the C6713B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS). Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS). The C6713B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1 data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 256K-byte memory space that is shared between program and data space. 64K bytes of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations of the two. The remaining 192K bytes in L2 serves as mapped SRAM. The C6713B has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASP has eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C6713B device has two bootmodes: from the HPI or from external asynchronous ROM. For more detailed information, see thebootmodesection of this data sheet. The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™ kernel.
200 MHz
90 °C
0 °C
3.3 V
1.2 V
264 kB
External
Floating Point
208-HLQFP (28x28)
Surface Mount
208-LQFP Exposed Pad
Texas Instruments
TMS320C5504AZCH10
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries.
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320DM8168CCYG2
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
105 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320F28377SZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
32-Bit Single-Core
FLASH
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
12x16b, A/D 24x12b, D/A 3x12b
Texas Instruments
TMS320C6726BRFP266
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
266 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
144-HTQFP (20x20)
Surface Mount
144-TQFP Exposed Pad
EBI/EMI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320UC5402GGU-80
80 MHz
100 °C
-40 °C
1.8 V, 2.5 V, 3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6412AGNZA6
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
105 °C
-40 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320C6414TBCLZ7
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
720 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320VC5509AZAYR
The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037). The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037).
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C6457CCMH2
The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
1.2 GHz
95 °C
0 °C
1.1 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
Fixed Point
688-FCBGA (23x23)
Surface Mount
688-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C28346ZFETR
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
300 MHz
105 °C
-40 °C
3.3 V
1.2 V
516 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320C6652CZHA6
The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.
600 MHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Variable
Texas Instruments
TMS320DM642AGNZA5
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
500 MHz
105 °C
-40 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320C32PCM50
50 MHz
85 °C
0 °C
5 V
5 V
2.25 kB
External
Floating Point
144-QFP (28x28)
Surface Mount
144-BQFP
Serial Port
Texas Instruments
TMS320F28235ZJZS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6415TBZLZ7
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6455DCTZA8
850 MHz
105 °C
-40 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320C6743BPTPT2
200 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320DM8167SCYG
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320VC5471ZHK
100 MHz
85 °C
0 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320VC5401PGE50
The TMS320VC5401 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5401 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the 5401 includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5401 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5401 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the 5401 includes the control mechanisms to manage interrupts, repeated operations, and function calls.
50 MHz
100 °C
-40 °C
3.3 V
1.8 V
16 kB
ROM
8 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
Texas Instruments
TMS320DM642AZNZ7
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
720 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320DM6437ZWTQ4
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C31PQA40
40 MHz
125 °C
-40 °C
5 V
5 V
8.25 kB
External
Floating Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320DM642AZDK6
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320VC5501GBE300
The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
48 kB
Fixed Point
201-NFBGA (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
Texas Instruments
TMS320F28232ZAYA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320DM355ZCEA135
135 MHz
100 °C
-40 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320DM6433ZDU7
The TMS320C64x+™ DSPs (including the TMS320DM6433 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6433 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6433 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6433 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; a UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6433 device includes a Video Processing Subsystem (VPSS) with a Video Processing Back-End (VPBE) output. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6433 and the network. The DM6433 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6433 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6433 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6433 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6433 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6433 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6433 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; a UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6433 device includes a Video Processing Subsystem (VPSS) with a Video Processing Back-End (VPBE) output. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6433 and the network. The DM6433 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6433 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6433 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320F28062PZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320DM641AGDK5
500 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320F2801PZS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C203PZA57
The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088). The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088).
57 MHz
85 °C
-40 °C
5 V
5 V
1 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
Texas Instruments
TMS320F28069UPZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
USB
Texas Instruments
TMS320C6727BZDHMUD
90 °C
0 °C
3.3 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320F28379SPTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
32-Bit Single-Core
FLASH
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320F28031PNS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320DM640AGDK4
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320DM355ZCE216
216 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320VC5410APGE12
The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
128 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM6467CZUTA
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320DM6443BZWT
The TMS320DM6443 (also referenced as DM6443) leverages TI's Davinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6443 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6443 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S MPU core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4752 million instructions per second (MIPS) at a clock rate of 594 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6443 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6443 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6443 includes a Video Processing Sub-System (VPSS) that has a configurable Resizer and Video Processing Back-End (VPBE) output used for display. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644X MPU core processor and the network. The DM6443 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the MPU, the DIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the MPU, allowing the MPU to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6443 to easily control peripheral devices and/or communicate with host processors. The DM6443 also provides multimedia card support, MMC/SD, with SDIO support. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6443 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6443 (also referenced as DM6443) leverages TI's Davinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6443 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6443 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S MPU core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4752 million instructions per second (MIPS) at a clock rate of 594 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6443 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6443 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6443 includes a Video Processing Sub-System (VPSS) that has a configurable Resizer and Video Processing Back-End (VPBE) output used for display. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644X MPU core processor and the network. The DM6443 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the MPU, the DIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the MPU, allowing the MPU to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6443 to easily control peripheral devices and/or communicate with host processors. The DM6443 also provides multimedia card support, MMC/SD, with SDIO support. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6443 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320C6415TBZLZA6
600 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320DM8148CCYE0
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320DM8148SCYE1
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
1 GHz, 700 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F2809PZQ
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM355DZCEA21
The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
216 MHz
100 °C
-40 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320DM648CUTD7
The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
720 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320BC53PQ57
57 MHz
70 °C
0 °C
5 V
5 V
8 kB
ROM
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
32 kB
24.13
24.13
Texas Instruments
TMS320F2808GBAS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC549GGUR100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320C5420PGEA200
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
Texas Instruments
TMS320F28027DASR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28377DZWTQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320F2806NMFAR
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V, 3.14 V
1.89 V, 3.47 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320DM648ZUT9HK
900 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320C6421ZDU7
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320LF2401AVFS
The TMS320Lx2401Adevice, a new member of the TMS320C24x™ generation of digital signal processor (DSP) controllers, is part of the TMS320C2000™ platform of fixed-point DSPs. The Lx2401A device offers the enhanced TMS320™ DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing 240x and C24x™ DSP controller devices, the Lx2401A offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The Lx2401A device offers a peripheral suite tailored to meet the specific price/performance points required by various applications. The Lx2401A also offers a cost-effective reprogrammable solution for volume production. A password-based "code security" feature on the device is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that the LF2401A contains a 256-word boot ROM to facilitate in-circuit programming. The boot ROM on LC2401A is used for test purposes. The Lx2401A offers an event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and offers up to 5 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™ debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. NOTE:The Lx2401A device has reduced peripheral functionality compared to other 24x/240x devices. While peripherals such as SPI and CAN are absent on the Lx2401A, peripherals such as EV and ADC have reduced functionality. For example, in the case of EV, there is no QEP unit and the Capture unit has only one capture pin (as opposed to three or six pins in other devices). The ADC has only five input channels (as opposed to eight or sixteen channels in other devices). For these reasons, some bits that are valid in other 24x/240x devices are not applicable in the Lx2401A. The registers and their valid bits are described in Table 16, Lx2401A DSP Peripheral Register Description. For a description of those registers and bits that are valid, refer to theTMS320LF/LC240xA DSP Controllers Reference Guide: System and Peripherals(literature number SPRU357). Any exceptions to SPRU357 has been described in the respective peripheral sections in this data sheet. The TMS320Lx2401Adevice, a new member of the TMS320C24x™ generation of digital signal processor (DSP) controllers, is part of the TMS320C2000™ platform of fixed-point DSPs. The Lx2401A device offers the enhanced TMS320™ DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing 240x and C24x™ DSP controller devices, the Lx2401A offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The Lx2401A device offers a peripheral suite tailored to meet the specific price/performance points required by various applications. The Lx2401A also offers a cost-effective reprogrammable solution for volume production. A password-based "code security" feature on the device is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that the LF2401A contains a 256-word boot ROM to facilitate in-circuit programming. The boot ROM on LC2401A is used for test purposes. The Lx2401A offers an event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and offers up to 5 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™ debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. NOTE:The Lx2401A device has reduced peripheral functionality compared to other 24x/240x devices. While peripherals such as SPI and CAN are absent on the Lx2401A, peripherals such as EV and ADC have reduced functionality. For example, in the case of EV, there is no QEP unit and the Capture unit has only one capture pin (as opposed to three or six pins in other devices). The ADC has only five input channels (as opposed to eight or sixteen channels in other devices). For these reasons, some bits that are valid in other 24x/240x devices are not applicable in the Lx2401A. The registers and their valid bits are described in Table 16, Lx2401A DSP Peripheral Register Description. For a description of those registers and bits that are valid, refer to theTMS320LF/LC240xA DSP Controllers Reference Guide: System and Peripherals(literature number SPRU357). Any exceptions to SPRU357 has been described in the respective peripheral sections in this data sheet.
125 °C
-40 °C
32-LQFP (7x7)
Surface Mount
32-LQFP
16 KB
16-Bit
FLASH
2 K
Internal
13
40 MHz
POR, PWM, WDT
C2xx DSP
10 b
SCI
5
Texas Instruments
TMS320F28PLC84PNTR
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
3.63 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
4
I2C, McBSP, SCI, SPI, UART/USART
Texas Instruments
TMS320C10FNL25
25 MHz
70 °C
0 °C
5 V
5 V
288 B
ROM
Fixed Point
44-PLCC
Surface Mount
44-LCC (J-Lead)
Parallel
3 kB
16.58
16.58
Texas Instruments
TMS320F243PGE
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 144-LQFP (20x20)
70 °C
0 °C
144-LQFP (20x20)
Surface Mount
144-LQFP
16 KB
CANbus, EBI/EMI, SCI, SPI, UART/USART
16-Bit
FLASH
Internal
32 I/O
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
8
1K x 8
10 b
Texas Instruments
TMS320C6421ZDUL
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM643AZDK5
The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
500 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320C6726RFPA225
225 MHz
105 °C
-40 °C
3.3 V
1.2 V
288 kB
Floating Point
144-HTQFP (20x20)
Surface Mount
144-TQFP Exposed Pad
EBI/EMI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320VC5410AGGU16
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
128 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM643AGDK5
500 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320C6747BZKBT3
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28035MPNTEP
The F28035 Piccolo™ family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The F28035 Piccolo™ family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency.
125 °C
-55 C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F2801NMFA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM6433ZWT5
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6205GWT200
The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320C6414TBGLZ6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28034PNTR
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6415TBCLZ6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C25GBL
This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design. This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design.
50 MHz
85 °C
-40 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
68-CPGA (24.38x24.38)
Through Hole
68-BCPGA Exposed Pad
Serial Port
Texas Instruments
TMS320C6747BZKB4
456 MHz
90 °C
0 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28374SPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, D/A 3x12b
Texas Instruments
TMS320F28032PNTR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
External, Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320R2812GHHQ
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz ROMless 179-BGA MicroStar (12x12)
125 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320DM369ZCED
Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a
432 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320LC541PZ2-40
40 MHz
100 °C
-40 °C
3.3 V
3.3 V
10 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
Duplex Serial Port
56 kB
Texas Instruments
TMS320F2808NMFS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F280230PTS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 40MHz 32KB (16K x 16) FLASH 48-LQFP (7x7)
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
Internal
22
40 MHz
1.71 V
1.995 V
C28x
I2C, SCI, SPI, UART/USART
4K x 16
A/D 8x12b
Texas Instruments
TMS320F28232ZJZA
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 176-BGA (15x15)
85 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F2809NMFA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28022DAS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F2802ZGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 64KB (32K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6414TZLZ7
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320LBC53SPZ80
80 MHz
70 °C
0 °C
3.3 V
3.3 V
8 kB
ROM
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP, TDM
32 kB
Texas Instruments
TMS320F28376SPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320VC5409AGWS16
The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts, The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts,
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
64 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28031PAGQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320F28062PZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320DM8168SCYG2
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320F28376SZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
Texas Instruments
TMS320VC5409AGGU16
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320TCI6487FGUNA
100 °C
-40 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320F28066UPFPS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-HTQFP (12x12)
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320F2801PZQ
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6742EZWTA2
The TMS320C6742 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 64-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: one I2C Bus interface; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; one multichannel buffered serial port (McBSP) with FIFO buffers; one serial peripheral interface (SPI) with multiple chip selects; two 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; one UART interface (withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6742 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 64-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: one I2C Bus interface; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; one multichannel buffered serial port (McBSP) with FIFO buffers; one serial peripheral interface (SPI) with multiple chip selects; two 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; one UART interface (withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
200 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Host Interface, I2C, McASP, McBSP, SPI, UART
1.088 MB
Texas Instruments
TMS320C6455BZTZ2
1.2 GHz
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320DM6435ZWT5CX
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F241FNA
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 68-PLCC (24.23x24.23)
85 °C
-40 °C
68-PLCC
Surface Mount
68-LCC (J-Lead)
16 KB
16-Bit
FLASH
Internal
26
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
24.23
24.23
8
CANbus, SCI, SPI, UART/USART
1K x 8
10 b
Texas Instruments
TMS320VC5510AZAVA1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
-40 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6743CZKBT3
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320F28066PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320C28343ZHHT
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
260 kB
Floating Point
179-BGA MICROSTAR (12x12)
Surface Mount
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320DM640AGNZA4
400 MHz
105 °C
-40 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320DM8168ACYG2
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320F280260PTT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 50MHz 16KB (8K x 16) FLASH 48-LQFP (7x7)
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
16 KB
32-Bit Single-Core
FLASH
3 K
Internal
22
50 MHz
1.71 V
1.995 V
C28x
I2C, SCI, SPI, UART/USART
A/D 8x12b
Texas Instruments
TMS320DM6437ZWT6
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6455BGTZ8
850 MHz
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320F28030PAGS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320F28062PFPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320C6203BGNY30C
The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
300 MHz
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
384-FC/CSP (18x18)
Surface Mount
384-FBGA, FCCSPBGA
McBSP
Texas Instruments
TMS320C5535AZHHA05
50 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
320 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, LCD, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C28345ZHHT
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
516 kB
Floating Point
179-BGA MICROSTAR (12x12)
Surface Mount
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320DM8127BCYE1
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320DM640GDK400
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320C6455BZTZ8
850 MHz
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320VC5421ZGU200
100 MHz
85 °C
0 °C
3.3 V
1.8 V
512 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6474FCUNA
100 °C
-40 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FC/CSP (23x23)
Surface Mount
561-BFBGA, FCCSPBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320VC5503ZAY
The TMS320VC5503 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 64K bytes of on-chip memory on TMS320VC5503 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or smaller amount of on-chip memory and need to operate in standby mode for more than 60% to 70% of the time. For applications that require more than 64K bytes of on-chip memory but less than 128K bytes of memory, Texas Instruments (TI) offers the TMS320VC5507 device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5503 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5503. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5503 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5503 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, The TMS320VC5503 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 64K bytes of on-chip memory on TMS320VC5503 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or smaller amount of on-chip memory and need to operate in standby mode for more than 60% to 70% of the time. For applications that require more than 64K bytes of on-chip memory but less than 128K bytes of memory, Texas Instruments (TI) offers the TMS320VC5507 device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5503 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5503. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5503 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5503 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters,
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
64 kB
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320F28020DAT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
3 K
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28332ZJZQ
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 176-BGA (15x15)
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F2808ZGMS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM365ZCED30
Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
300 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C6657SCZH
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320C6203BZNY300
The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
300 MHz
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
384-FC/CSP (18x18)
Surface Mount
384-FBGA, FCCSPBGA
McBSP
Texas Instruments
TMS320DM8167SCYG4
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320F280270PTT
The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
Internal
22
50 MHz
1.71 V
1.995 V
C28x
I2C, SCI, SPI, UART/USART
4K x 16
A/D 8x12b
Texas Instruments
TMS320LF2403APAGS
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32 KB
16-Bit
FLASH
2 K
Internal
21
40 MHz
POR, PWM, WDT
C2xx DSP
8
CANbus, SCI, SPI, UART/USART
10 b
Texas Instruments
TMS320C54V90APGE
117 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
256 kB
Texas Instruments
TMS320C5534AZAYA10
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.3 V
2 Mbit
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320DM641GDK600
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320C6672ACYP25
The TMS320C6672 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with two C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 2.5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6672 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6672 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with two C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 2.5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6672 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.25 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
5.125 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320LF2407APGES
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
125 °C
-40 °C
144-LQFP (20x20)
Surface Mount
144-LQFP
64 KB
CANbus, EBI/EMI, SCI, SPI, UART/USART
16-Bit
FLASH
Internal
41
40 MHz
POR, PWM, WDT
C2xx DSP
5K x 8
A/D 16x10b
Texas Instruments
TMS320C6474FGUN2
1.2 GHz
95 °C
0 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320DM8168CCYGH
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320F2811PBKS
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
256 KB
CANbus, McBSP, SCI, SPI, UART/USART
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6745CPTP3
375 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28054FPNS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28065UPNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320VC5441AZGUZE
133 MHz
100 °C
-40 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
169-BGA MicroStar
Surface Mount
169-LFBGA
Host Interface, McBSP
12
12
Texas Instruments
TMS320F2806PZS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6748EZWT3
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28062PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320DA105PGE160
Texas Instruments
TMS320C6472EZTZ
500 MHz
85 °C
0 °C
1.8 V, 3.3 V
1 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320F2812GBBS
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6416TBZLZA6
600 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6671ACYPA
The TMS320C6671 Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with the C66x CorePac DSP runing at 1.0 to 1.25 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6671 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6671 Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with the C66x CorePac DSP runing at 1.0 to 1.25 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6671 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
4.56 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320DM335DZCE135
135 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320DM642AZDK7
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
720 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320F2802PZA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28052PNS
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5509AGHH
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320F28377SPZPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
82K x 16
A/D 14x12b, A/D 14x16b, D/A 3x12b
Texas Instruments
TMS320DM6441ZWT
256 MHz, 513 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320C6472ECTZ
500 MHz
85 °C
0 °C
1.8 V, 3.3 V
1 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320C6413ZTS500
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320F28375DPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320DM368ZCED
Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
432 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320F2801ZGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 32KB (16K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F2802PZQ
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28376SPZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
66 K
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
A/D 14x12b, A/D 14x16b, D/A 3x12b
Texas Instruments
TMS320C6205GHK200
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-BGA Microstar (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320C5534AZAY05
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
2 Mbit
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C6742EZWT2
The TMS320C6742 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 64-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: one I2C Bus interface; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; one multichannel buffered serial port (McBSP) with FIFO buffers; one serial peripheral interface (SPI) with multiple chip selects; two 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; one UART interface (withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6742 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 64-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: one I2C Bus interface; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; one multichannel buffered serial port (McBSP) with FIFO buffers; one serial peripheral interface (SPI) with multiple chip selects; two 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; one UART interface (withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Host Interface, I2C, McASP, McBSP, SPI, UART
1.088 MB
Texas Instruments
TMS320DM365ZCE21
Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
216 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C6421ZDUQ5
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM6467CCUTA
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C6652CZH6
The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.
600 MHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Variable
Texas Instruments
TMS320C6748EZCE4
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320VC549GGU-100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320F28065PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320C6742EZCE2
200 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Host Interface, I2C, McASP, McBSP, SPI, UART
1.088 MB
Texas Instruments
TMS320F28054FPNQ
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F2811PBKA
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
85 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
256 KB
CANbus, McBSP, SCI, SPI, UART/USART
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F2812PGFAG4
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 176-LQFP (24x24)
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C5505AZCH15
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.4 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320C6712DGDP150
The TMS320C67x™ DSP (including the TMS320C6712, TMS320C6712C, TMS320C6712D devices) are members of the floating-point DSP family in the TMS320C6000. DSP platform. The C6712, C6712C, and C6712D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 900 million floating-point operations per second (MFLOPS) at a clock rate of 150 MHz, the C6712D device is the lowest-cost DSP in the C6000™ DSP platform. The C6712D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6712D can produce two MACs per cycle for a total of 300 MMACS. The C6712D uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, and a glueless 16-bit external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The C6712D device also includes a dedicated general-purpose input/output (GPIO) peripheral module. The C6712D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6712D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x™ DSP (including the TMS320C6712, TMS320C6712C, TMS320C6712D devices) are members of the floating-point DSP family in the TMS320C6000. DSP platform. The C6712, C6712C, and C6712D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 900 million floating-point operations per second (MFLOPS) at a clock rate of 150 MHz, the C6712D device is the lowest-cost DSP in the C6000™ DSP platform. The C6712D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6712D can produce two MACs per cycle for a total of 300 MMACS. The C6712D uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, and a glueless 16-bit external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The C6712D device also includes a dedicated general-purpose input/output (GPIO) peripheral module. The C6712D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6712D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
90 °C
0 °C
3.3 V
1.26 V
72 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
McBSP
27
27
Texas Instruments
TMS320F28062UPFPS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 80-HTQFP (12x12)
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320F28027FPTTR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
12 K
Internal
22
60 MHz
1.71 V
3.63 V
C28x
13
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320DM6435ZWT7
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
700 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320VC5416ZWS120
The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
2 Mbit
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28377SPTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
32-Bit Single-Core
FLASH
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320VC5509PGE31
144 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320F28068PZPS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 100-HTQFP (14x14)
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320LBC57PGE80
80 MHz
70 °C
0 °C
3.3 V
3.3 V
14 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, SSP
64 kB
Texas Instruments
TMS320F28062PFPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320VC5420GGU200
100 MHz
100 °C
0 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320VC549PGE-100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320C6204ZWT200
The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320VC549PGE-120
120 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320LC549GGU-66
66 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
32 kB
Texas Instruments
TMS320C6748EZCE3
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F2812ZHHS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
125 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28375SZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
32-Bit Single-Core
FLASH
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
Texas Instruments
TMS320F280270PTS
The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
Internal
22
50 MHz
1.71 V
1.995 V
C28x
I2C, SCI, SPI, UART/USART
4K x 16
A/D 8x12b
Texas Instruments
TMS320C6745DPTPA3
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
105 °C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320VC5502PGF200
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
176-LQFP (24x24)
Surface Mount
176-LQFP
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320VC5509AZHHR
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C6712GFN100
100 MHz
90 °C
0 °C
3.3 V
1.8 V
72 kB
External
Floating Point
256-BGA
Surface Mount
256-BGA
McBSP
27
27
Texas Instruments
TMS320C6727GDH300
300 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C5535AZAYA05
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
50 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
320 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, LCD, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320F28063PZPQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 100-HTQFP (14x14)
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
32-Bit Single-Core
FLASH
34 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28374DPTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
FLASH
86 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320DM6467CCUTV6
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
85 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C44PDB50
50 MHz
85 °C
0 °C
5 V
5 V
8 kB
External
Floating Point
304-PQFP
Surface Mount
304-BFQFP Exposed Pad
Communication Ports
40
40
Texas Instruments
TMS320LF2407APGEA
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
85 °C
-40 °C
144-LQFP (20x20)
Surface Mount
144-LQFP
64 KB
CANbus, EBI/EMI, SCI, SPI, UART/USART
16-Bit
FLASH
Internal
41
40 MHz
POR, PWM, WDT
C2xx DSP
5K x 8
A/D 16x10b
Texas Instruments
TMS320F28054MPNQ
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C5545AZQW06
60 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
118-BGA MICROSTAR JUNIOR (7x7)
Surface Mount
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320LC203PZ
Texas Instruments
TMS320DM8168SCYGA2
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
105 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320C6747DZKB4
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
456 MHz
90 °C
0 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6654CZHA7
The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.
750 MHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Variable
Texas Instruments
TMS320C6412AZNZ5
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320C6424ZDUQ6
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6474FZUNA
100 °C
-40 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FCBGA (23x23)
Surface Mount
561-BFBGA, FCBGA Exposed Pad
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320F28034RSHS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
32-Bit Single-Core
FLASH
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
12 b
Texas Instruments
TMS320VC5409AGGU12
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320VC5409APGE12
The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts, The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts,
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C28341ZHHT
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
196 kB
Floating Point
179-BGA MICROSTAR (12x12)
Surface Mount
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320C541PZ1-40
40 MHz
100 °C
-40 °C
5 V
5 V
10 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
Duplex Serial Port
56 kB
Texas Instruments
TMS320F28033RSHT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 64KB (32K x 16) FLASH 56-VQFN (7x7)
105 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
64 KB
32-Bit Single-Core
FLASH
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
12 b
Texas Instruments
TMS320C6726RFP250
250 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
144-HTQFP (20x20)
Surface Mount
144-TQFP Exposed Pad
EBI/EMI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C6743CZKB3
375 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320C6743DZKBT3
The C6743 device is a low-power digital signal processor based on C674x DSP core. The device consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The C6743 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance. The C6743 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 128-KB of memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; two multichannel audio serial ports (McASPs) with 14/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; two UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces (EMIFs): an asynchronous external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6743 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6743 device is a low-power digital signal processor based on C674x DSP core. The device consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The C6743 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance. The C6743 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 128-KB of memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; two multichannel audio serial ports (McASPs) with 14/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; two UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces (EMIFs): an asynchronous external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6743 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320LC543PZ1-50
50 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
Texas Instruments
TMS320DM6467CCUT7
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
364.5 MHz, 729 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320DM640AGNZ4
The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™ DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges. The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16); a 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITU-). These video port peripherals are configurable and can support either video capture and/or video display modes. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320F28063PZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
34 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320F28232PGFA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6424ZDU4
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28334ZJZS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C206PZ80
The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages: The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages:
80 MHz
70 °C
0 °C
5 V
3.3 V
9 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
64 kB
Texas Instruments
TMS320F28232ZJZS
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 176-BGA (15x15)
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C28342ZFEQ
300 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
196 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Automotive
AEC-Q100
Texas Instruments
TMS320F28054PNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320DM643AZNZ6
The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320C6727BZDH300
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
300 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C5515AZCH12
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
120 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320C5532AZAYA05
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
50 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
64 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320F28016PZQ
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM6437ZDU5
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C6678CYP25
1.25 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320C6201GJLA200
200 MHz
105 °C
-40 °C
3.3 V
1.8 V
128 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA Exposed Pad
Host Interface, McBSP
Texas Instruments
TMS320VC5507ZHHR
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
128 kB
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C5534NZAY10
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.3 V
2 Mbit
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320F28234ZJZQ
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28069PZA
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320VC5501PGF300
The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
48 kB
ROM
Fixed Point
176-LQFP (24x24)
Surface Mount
176-LQFP
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320F28052PNT
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C6424ZDU6
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6205DGHK200
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-BGA Microstar (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320C6414TBZLZ1
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6454BGTZA
105 °C
-40 °C
1.2 V, 1.5 V, 1.8 V, 3.3 V
1.25 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320VC5510AZAV1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
0 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6418GTS600
The TMS320C64x™ DSPs (including the TMS320C6418 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6418 (C6418) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI). The high-performance, lower-cost C6418 DSP enables customers to reduce system costs for telecom, software radio, Digital Terrestrial Television Broadcasting (DTTB), and digital Broadcast Satellite/Communication Satellite (BS/CS) applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6418 device offers cost-effective solutions to high-performance DSP programming challenges. The C6418 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6418 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6418 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6418 device has a high-performance embedded coprocessor [Viterbi Decoder Coprocessor (VCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the EDMA controller. The C6418 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 4-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache (up to 256K bytes), or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6418 has sufficient bandwidth to support all six serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6418 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6418 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6418 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6418 (C6418) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI). The high-performance, lower-cost C6418 DSP enables customers to reduce system costs for telecom, software radio, Digital Terrestrial Television Broadcasting (DTTB), and digital Broadcast Satellite/Communication Satellite (BS/CS) applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6418 device offers cost-effective solutions to high-performance DSP programming challenges. The C6418 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6418 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6418 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6418 device has a high-performance embedded coprocessor [Viterbi Decoder Coprocessor (VCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the EDMA controller. The C6418 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 4-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache (up to 256K bytes), or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6418 has sufficient bandwidth to support all six serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6418 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6418 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
3.3 V
1.4 V
544 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320C6457CGMHA
100 °C
-40 °C
1.1 V, 1.8 V, 3.3 V
1.1 V
2.1 MB
Fixed Point
688-FCBGA (23x23)
Surface Mount
688-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6748BZWTA3
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM8148CCYE1
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
1 GHz, 750 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320C6211BZFN150
The TMS320C62x™ DSPs (including the TMS320C6211/C6211B devices) compose one of the fixed-point DSP families in the TMS320C6000™ DSP platform. The TMS320C6211 (C6211) and TMS320C6211B (C6211B) devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1333 million instructions per second (MIPS) at a clock rate of 167 MHz, the C6211/C6211B device offers cost-effective solutions to high-performance DSP programming challenges. The C6211/C6211B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6211/C6211B can produce two multiply-accumulates (MACs) per cycle for a total of 333 million MACs per second (MMACS). The C6211/C6211B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6211/C6211B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6211/C6211B has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6211/C6211B devices) compose one of the fixed-point DSP families in the TMS320C6000™ DSP platform. The TMS320C6211 (C6211) and TMS320C6211B (C6211B) devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1333 million instructions per second (MIPS) at a clock rate of 167 MHz, the C6211/C6211B device offers cost-effective solutions to high-performance DSP programming challenges. The C6211/C6211B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6211/C6211B can produce two multiply-accumulates (MACs) per cycle for a total of 333 million MACs per second (MMACS). The C6211/C6211B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6211/C6211B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6211/C6211B has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
90 °C
0 °C
3.3 V
1.8 V
72 kB
External
Fixed Point
256-BGA
Surface Mount
256-BGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320C6202GJL250X
250 MHz
90 °C
0 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA Exposed Pad
McBSP
Texas Instruments
TMS320DM6437ZWTL
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320C28345ZFEQ
200 MHz
125 ¯C
-40 °C
3.3 V
1.1 V
516 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Automotive
AEC-Q100
Texas Instruments
TMS320F28062FPFPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320LF2406APZAR
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
16-Bit
FLASH
Internal
41
40 MHz
POR, PWM, WDT
C2xx DSP
CANbus, SCI, SPI, UART/USART
5K x 8
A/D 16x10b
Texas Instruments
TMS320F280200DAS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
16 KB
32-Bit Single-Core
FLASH
2 K
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6654CZH7
The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.
750 MHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
1.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320DM8165BCYG0
667 MHz, 720 MHz
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320VC5509AGBB
The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037). The TMS320VC5509A fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals and three McBSPs. The 5509A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5509A. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5509A is supported by the industry‘s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5509A is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5509A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5509A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5509A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer‘s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer‘s Reference(literature number SPRU037).
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
2 Mbit
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C6746EZWT3
The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320F28234ZJZS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28376DZWTS
C28x C2000™ C28x Delfino™, Functional Safety (FuSa) Microcontroller IC 32-Bit Dual-Core 200MHz 512KB (256K x 16) FLASH 337-NFBGA (16x16)
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
FLASH
86 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320F2806PZA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28062PFPQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320F28PLC84PNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
3.63 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
4
I2C, McBSP, SCI, SPI, UART/USART
Texas Instruments
TMS320F28377DZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320F28032PAGQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320DM6437ZDUQ6
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320VC5503GHH
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
64 kB
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320DM355ZCE135
135 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320DM8169BCYG4
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
1 GHz
1.2 GHz
Texas Instruments
TMS320F28333PGFA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320LF2406APZA
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
16-Bit
FLASH
Internal
41
40 MHz
POR, PWM, WDT
C2xx DSP
CANbus, SCI, SPI, UART/USART
5K x 8
A/D 16x10b
Texas Instruments
TMS320C5504AZCHA10
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries.
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320DM642AZNZ6
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320C6202BGNZ300
The TMS320C6202 and TMS320C6202B devices are part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6202/02B has a performance capability of up to 2400 million instructions per second (MIPS) at 300 MHz. The C6202/02B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. These processors have 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6202/02B can produce two multiply-accumulates (MACs) per cycle. This gives a total of 600 million MACs per second (MMACS) for the C6202/02B device. The C6202/02B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6202/02B devices program memory consists of two blocks, with a 128K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6202/02B consists of two 64K-byte blocks of RAM. The C6202/02B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6202 and TMS320C6202B devices are part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6202/02B has a performance capability of up to 2400 million instructions per second (MIPS) at 300 MHz. The C6202/02B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. These processors have 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6202/02B can produce two multiply-accumulates (MACs) per cycle. This gives a total of 600 million MACs per second (MMACS) for the C6202/02B device. The C6202/02B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6202/02B devices program memory consists of two blocks, with a 128K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6202/02B consists of two 64K-byte blocks of RAM. The C6202/02B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
300 MHz
90 °C
0 °C
3.3 V
1.5 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA
McBSP
Texas Instruments
TMS320F28069FPZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320F2806ZGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 64KB (32K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5471GHKA
100 MHz
85 °C
-40 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320F28033PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28069MPZPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28376SPZPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
A/D 20x12b, A/D 20x16b, D/A 3x12b
Texas Instruments
TMS320C6727ZDH250
250 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C54CSTGGU
120 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP, UART
256 kB
Texas Instruments
TMS320C6211BGFN167
167 MHz
90 °C
0 °C
3.3 V
1.8 V
72 kB
External
Fixed Point
256-BGA
Surface Mount
256-BGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320C6203BGNZ173
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA
McBSP
Texas Instruments
TMS320F28026DAQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 32KB (16K x 16) FLASH 38-TSSOP
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C203PZ57
The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088). The TMS320C2xx generation of digital signal processors (DSPs) combines strong performance and great flexibility to meet the needs of signal processing and control applications. The T320C2xLP core CPU that is the basis of all 'C2xx devices has been optimized for high speed, small size, and low-power, making it ideal for demanding applications in many markets. The CPU has an advanced, modified Harvard architecture with six internal buses that permits tremendous parallelism and data throughput. The powerful 'C2xx instruction set makes software development easy. And because the 'C2xx is code-compatible with the TMS320C2x and 'C5x generations, your code investment is preserved. Around this core, 'C2xx-generation devices feature various combinations of on-chip memory and peripherals. The serial ports provide easy communication with external devices such as codecs, A/D converters, and other processors. Other peripherals that facilitate the control of external devices include general-purpose I/O pins, a 20-bit timer, and a wait-state generator. Because of their strong performance, low cost, and easy-to-use development environment, 'C2xx-generation DSPs are an ideal choice for applications such as smart phones, digital cameras, modems, remote metering, and security systems. Table 2 provides a comparison of the devices in the 'C2xx generation. It shows the capacity of on-chip RAM and ROM, the number of serial and parallel I/O ports, the execution time of one machine cycle, and the type of package with total pin count. Core power dissipation. For complete details, seeCalculation of TMS320C2xx Power Dissipation(literature number SPRA088).
57 MHz
70 °C
0 °C
5 V
5 V
1 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
Texas Instruments
TMS320VC549PGER-80
80 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320LC549GGUR-80
80 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
32 kB
Texas Instruments
TMS320F28234PGFA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C28344ZFET
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
300 MHz
105 °C
-40 °C
3.3 V
1.2 V
260 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320DM642AZNZA6
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
600 MHz
105 °C
-40 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320C6414TBCLZ6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6745CPTPT3
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6678AXCYPA
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320SP109AZAY
Fixed Point
179-NFBGA (12x12)
Surface Mount
Texas Instruments
TMS320LF2403APAGA
The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support. The TMS320LF240xA and TMS320LC240xA devices, new members of the TMS320C24x™; generation of digital signal processor (DSP) controllers, are part of the TMS320C2000™; platform of fixed-point DSPs. The 240xA devices offer the enhanced TMS320™; DSP architectural design of the C2xx core CPU for low-cost, low-power, and high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single-chip DSP controller. While code-compatible with the existing C24x™; DSP controller devices, the 240xA offers increased processing performance (40 MIPS) and a higher level of peripheral integration. See theTMS320x240xA Device Summarysection for device-specific features. The 240xA generation offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash devices of up to 32K words offer a cost-effective reprogrammable solution for volume production. The 240xA devices offer a password-based "code security" feature which is useful in preventing unauthorized duplication of proprietary code stored in on-chip Flash/ROM. Note that Flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. The 240xA family also includes ROM devices that are fully pin-to-pin compatible with their Flash counterparts. All 240xA devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include center- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter control with a single 240xA DSP controller. Select EV pins have been provided with an "input-qualifier" circuitry, which minimizes inadvertent pin-triggering by glitches. The high-performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 375 ns and offers up to 16 channels of analog input. The autosequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead. A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces, the 2407A, 2406A, 2404A, and 2403A offer a 16-bit synchronous serial peripheral interface (SPI). The 2407A, 2406A, and 2403A offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also configurable as general-purpose inputs/outputs (GPIOs). To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite of code-generation tools from C compilers to the industry-standard Code Composer Studio™; debugger supports this family. Numerous third-party developers not only offer device-level development tools, but also system-level design and development support.
85 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32 KB
16-Bit
FLASH
2 K
Internal
21
40 MHz
POR, PWM, WDT
C2xx DSP
8
CANbus, SCI, SPI, UART/USART
10 b
Texas Instruments
TMS320F28030RSHT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320DM6437ZWTQ5
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320F28030PAGT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320C5532AZHHA05
50 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
64 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320C6455BCTZ2
1.2 GHz
90 °C
0 °C
1.8 V, 3.3 V
1.25 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320F240PQ
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 32KB (16K x 16) FLASH 132-BQFP (24.13x24.13)
70 °C
0 °C
132-BQFP
Surface Mount
132-BQFP Bumpered
32 KB
16-Bit
FLASH
Internal
28
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
24.13
24.13
EBI/EMI, SCI, SPI, UART/USART
1K x 8
A/D 16x10b
Texas Instruments
TMS320C6727ZDHA250
250 MHz
105 °C
-40 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C6743DPTPT3
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320F28015PZSR
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC549PGER100
100 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320F28062UPNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320F28067PZPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320VC5402GGUR10
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6412AGNZ6
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320C6748BZCEA3E
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320UC5409PGE-80
80 MHz
100 °C
-40 °C
1.8 V, 2.5 V, 3.3 V
1.8 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6412AGNZ7
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
720 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320VC549PGE-80
80 MHz
100 °C
-40 °C
3.3 V
2.5 V
64 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, Host Interface, Serial Port
32 kB
Texas Instruments
TMS320C28343ZAYT
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
260 kB
Floating Point
179-NFBGA (12x12)
Surface Mount
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320DM6467TZUT1
1 GHz, 500 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C6747AZKB3
300 MHz
90 °C
0 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28026PTQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320DM365ZCEZ
300 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320DM6441AZWT
The TMS320DM6441 (also referenced as DM6441) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6441 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6441 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4104 million instructions per second (MIPS) at a clock rate of 513 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2052 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4104 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6441 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6441 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) bus interface; one audio serial port (ASP); two 64-bit general-purpose timers each configurable as two independent 32-bit timers; one 64-bit watchdog timer; up to 71 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UARTs with hardware handshaking support on one UART; three pulse width modulator (PWM) peripherals; and two external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6441 device includes a video processing subsystem (VPSS) with two configurable video/imaging peripherals: one video processing front-end (VPFE) input used for video capture, one video processing back-end (VPBE) output with imaging coprocessor (VICP) used for display. The video processing front-end (VPFE) consists of a CCD controller (CCDC), a preview engine (previewer), histogram module, auto-exposure/white balance/focus module (H3A), and resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and charge coupled devices (CCDs). The previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer pattern to YUV4:2:2. The histogram and H3A modules provide statistical information on the raw color data for use by the DM6441. The resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The video processing back-end (VPBE) consists of an on-screen display engine (OSD) and a video encoder (VENC). The OSD engine is capable of handling two separate video windows and two separate OSD windows. Other configurations include two video windows, one OSD window, and one attribute window allowing up to eight levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. VFocus (part of the VPBE functionality and operationally (e.g., 16-bit multiplexed address/data) is also provided. The Ethernet media access controller (EMAC) provides an efficient interface between the DM6441 and the network. The DM6441 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6441 to easily control peripheral devices and/or communicate with host processors. The DM6441 also provides Memory Stick/Memory Stick Pro card support, MMC/SD with SDIO support, and a universal serial bus (USB). The DM6441 also includes a video/imaging coprocessor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6441 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6441 (also referenced as DM6441) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6441 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6441 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4104 million instructions per second (MIPS) at a clock rate of 513 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2052 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4104 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6441 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6441 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) bus interface; one audio serial port (ASP); two 64-bit general-purpose timers each configurable as two independent 32-bit timers; one 64-bit watchdog timer; up to 71 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UARTs with hardware handshaking support on one UART; three pulse width modulator (PWM) peripherals; and two external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6441 device includes a video processing subsystem (VPSS) with two configurable video/imaging peripherals: one video processing front-end (VPFE) input used for video capture, one video processing back-end (VPBE) output with imaging coprocessor (VICP) used for display. The video processing front-end (VPFE) consists of a CCD controller (CCDC), a preview engine (previewer), histogram module, auto-exposure/white balance/focus module (H3A), and resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and charge coupled devices (CCDs). The previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer pattern to YUV4:2:2. The histogram and H3A modules provide statistical information on the raw color data for use by the DM6441. The resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The video processing back-end (VPBE) consists of an on-screen display engine (OSD) and a video encoder (VENC). The OSD engine is capable of handling two separate video windows and two separate OSD windows. Other configurations include two video windows, one OSD window, and one attribute window allowing up to eight levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. VFocus (part of the VPBE functionality and operationally (e.g., 16-bit multiplexed address/data) is also provided. The Ethernet media access controller (EMAC) provides an efficient interface between the DM6441 and the network. The DM6441 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6441 to easily control peripheral devices and/or communicate with host processors. The DM6441 also provides Memory Stick/Memory Stick Pro card support, MMC/SD with SDIO support, and a universal serial bus (USB). The DM6441 also includes a video/imaging coprocessor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6441 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
256 MHz, 513 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320VC5502GZZ200
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-BGA MICROSTAR (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320F28069PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
Surface Mount
80-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Texas Instruments
TMS320F28335PTPS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6424ZWTL
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F280200PTS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 40MHz 16KB (8K x 16) FLASH 48-LQFP (7x7)
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
16 KB
32-Bit Single-Core
FLASH
2 K
Internal
22
40 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F28334PTPQ
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 176-HLQFP (24x24)
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6746AZWT3
300 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320F28062PZTR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
54
90 MHz
1.71 V, 2.97 V
1.995 V, 3.63 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28031RSHS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F2806PZQ
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28075PZPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
41
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
Texas Instruments
TMS320C6412AZNZ7
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
720 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320VC5441AGGU
133 MHz
100 °C
-40 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
169-BGA MicroStar
Surface Mount
169-LFBGA
Host Interface, McBSP
12
12
Texas Instruments
TMS320F280270DAT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 50MHz 32KB (16K x 16) FLASH 38-TSSOP
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
6
I2C, SCI, SPI, UART/USART
4K x 16
Texas Instruments
TMS320C6746EZCEA3
The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320VC5501ZAV300
The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5501 (5501) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5501 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Two full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is an 8-bit parallel interface used to provide host processor access to 16K words of internal memory on the 5501. The HPI operates in multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5501 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. The Code Composer Studio× IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5501 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
48 kB
ROM
Fixed Point
201-NFBGA (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320DM6435ZWTQ4
400 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6424ZWT6
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28234ZAYA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320SP103AZGW2
200 MHz
85 °C
0 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6745CPTPA3
375 MHz
105 °C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320LC542PBK2-50
50 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
128-LQFP (14x14)
Surface Mount
128-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320C6414TBGLZ1
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28069UPFPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320C28346ZFET
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
300 MHz
105 °C
-40 °C
3.3 V
1.2 V
516 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320DM365ZCE30
Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
300 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C50PQ80
80 MHz
70 °C
0 °C
5 V
5 V
20 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320C80GGP50
50 MHz
85 °C
0 °C
3.3 V
3.3 V
98 kB
External
Floating Point
352-BGA (35x35)
Surface Mount
352-LBGA
Parallel
Texas Instruments
TMS320VC5510AGBCA1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
-40 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320VC5416PGE160
The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
2 Mbit
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C50PQA57
57 MHz
85 °C
-40 °C
5 V
5 V
20 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320C50PQ57
57 MHz
70 °C
0 °C
5 V
5 V
20 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320F28067PZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320C25FNLR50
50 MHz
70 °C
0 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
68-PLCC
Surface Mount
68-LCC (J-Lead)
Serial Port
24.23
24.23
Texas Instruments
TMS320F28066PZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320C6670ACYPA
The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320VC5441GGU
133 MHz
85 °C
0 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
169-BGA MicroStar
Surface Mount
169-LFBGA
Host Interface, McBSP
12
12
Texas Instruments
TMS320C6670AXCYP
100 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320C6204ZWTA200
The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6204 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6204 (C6204) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6204 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6204 offers cost-effective solutions to high-performance DSP-programming challenges. The C6204 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6204 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6204 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6204 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped as program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6204 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
105 °C
-40 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320C5505AZCH10
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL) and 10-bit SAR ADC(VDDA_ANA).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320F2801GGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 32KB (16K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6203BZNY173
The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6203B device is part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6203B has a performance capability of up to 2400 MIPS at a clock rate of 300 MHz. The C6203B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203B can produce two multiply-accumulates (MACs) per cycle for a total of 600 million MACs per second (MMACS). The C6203B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203B device program memory consists of two blocks, with a 256K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6203B consists of two 256K-byte blocks of RAM. The C6203B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
384-FC/CSP (18x18)
Surface Mount
384-FBGA, FCCSPBGA
McBSP
Texas Instruments
TMS320F2808GBAA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM355DZCE216
The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
216 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320C6412AZDK6
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320VC5402ZGUR10
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6414TBZLZ8
850 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6204ZHKA200
200 MHz
105 °C
-40 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
McBSP
Texas Instruments
TMS320DM335CVPI
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320F241PG
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 64-QFP (14x20)
70 °C
0 °C
64-QFP (14x20)
Surface Mount
64-BQFP
16 KB
16-Bit
FLASH
Internal
26
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
8
CANbus, SCI, SPI, UART/USART
1K x 8
10 b
Texas Instruments
TMS320DM6467CCUTAV
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
105 °C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C5515AZCH10
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320DM642AZNZ5
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
500 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320LC548GGU-80
80 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
BSP, HPI, TDM
Texas Instruments
TMS320F28020PTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
3 K
Internal
22
40 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320VC5402AZWS16
The TMS320VC5402A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5402A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5402A also includes the control mechanisms to manage interrupts, The TMS320VC5402A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5402A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5402A also includes the control mechanisms to manage interrupts,
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
32 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28334PGFA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6414TBZLZA8
850 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28027DATR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM648ZUTA8
800 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320C6411GLZ
300 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320BC51PQ57
57 MHz
70 °C
0 °C
5 V
5 V
4 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
16 kB
24.13
24.13
Texas Instruments
TMS320F28044PZS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 100-LQFP (14x14)
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F2812GHHS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
125 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320DM6435ZWT6CX
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM6467CZUT7
364.5 MHz, 729 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C6414TBCLZA6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6712DZDP150
The TMS320C67x™ DSP (including the TMS320C6712, TMS320C6712C, TMS320C6712D devices) are members of the floating-point DSP family in the TMS320C6000. DSP platform. The C6712, C6712C, and C6712D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 900 million floating-point operations per second (MFLOPS) at a clock rate of 150 MHz, the C6712D device is the lowest-cost DSP in the C6000™ DSP platform. The C6712D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6712D can produce two MACs per cycle for a total of 300 MMACS. The C6712D uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, and a glueless 16-bit external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The C6712D device also includes a dedicated general-purpose input/output (GPIO) peripheral module. The C6712D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6712D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x™ DSP (including the TMS320C6712, TMS320C6712C, TMS320C6712D devices) are members of the floating-point DSP family in the TMS320C6000. DSP platform. The C6712, C6712C, and C6712D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 900 million floating-point operations per second (MFLOPS) at a clock rate of 150 MHz, the C6712D device is the lowest-cost DSP in the C6000™ DSP platform. The C6712D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6712D can produce two MACs per cycle for a total of 300 MMACS. The C6712D uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, and a glueless 16-bit external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals. The C6712D device also includes a dedicated general-purpose input/output (GPIO) peripheral module. The C6712D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6712D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
90 °C
0 °C
3.3 V
1.26 V
72 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
McBSP
27
27
Texas Instruments
TMS320DM6446BZWT
The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320DM6446 (also referenced as DM6446) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+™ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: A coprocessor 15 (CP15) and protection module Data and program Memory Management Units (MMUs) with table look-aside buffers. Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+™ DSP with added functionality and an expanded instruction set. Any reference to the C64x™ DSP or C64x™ CPU also applies, unless otherwise noted, to the C64x+™ DSP and C64x+™ CPU, respectively. With performance of up to 6480 million instructions per second (MIPS) at a clock rate of 810 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units--two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 3240 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 6480 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732). The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support. The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides listed in Section 2.8.3.1,Related Documentation From Texas Instruments. The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320C5535AZAYA10
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.3 V
320 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, LCD, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320R2811PBKQ
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz ROMless 128-LQFP (14x14)
125 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320F2810PBKQR
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
CANbus, McBSP, SCI, SPI, UART/USART
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6413GTSA500
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
105 °C
-40 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320F28023PTQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
50 MHz
1.71 V
1.995 V
C28x
13
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320C6413ZTSA500
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
105 °C
-40 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320C6748BZWTD4
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6747DZKBD4
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
456 MHz
90 °C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6411AGLZ
300 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320C6746BZWT4
456 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320C30GELSD
85 °C
0 °C
5 V
5 V
8.25 kB
Floating Point
181-CPGA
Through Hole
181-CPGA
Serial Port
16 kB
Texas Instruments
TMS320C28345ZFET
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
516 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320VC5404GGU
120 MHz
100 °C
0 °C
3.3 V
1.5 V
32 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP, UART
128 kB
Texas Instruments
TMS320BC52PJA57
57 MHz
85 °C
-40 °C
5 V
5 V
2 kB
ROM
8 kB
Fixed Point
100-QFP (20x14)
Surface Mount
100-BQFP
BSP, SSP
Texas Instruments
TMS320C6670ACYPA2
The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6670 Multicore Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance applications such as software defined radio, emerging broadband and other communications segments. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.20 GHz enabling up to 4.8 GHz. Hardware acceleration provides a highly integrated, power efficient and easy to use platform for implementing a combination of multi-band, multi-standard waveforms, including proprietary air-interfaces. The C6670 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.2 GHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320DM8168CCYG
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320F28376SZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
Texas Instruments
TMS320C6747CZKBD4
456 MHz
90 °C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6202BGNY300
The TMS320C6202 and TMS320C6202B devices are part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6202/02B has a performance capability of up to 2400 million instructions per second (MIPS) at 300 MHz. The C6202/02B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. These processors have 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6202/02B can produce two multiply-accumulates (MACs) per cycle. This gives a total of 600 million MACs per second (MMACS) for the C6202/02B device. The C6202/02B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6202/02B devices program memory consists of two blocks, with a 128K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6202/02B consists of two 64K-byte blocks of RAM. The C6202/02B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C6202 and TMS320C6202B devices are part of the TMS320C62x™ fixed-point DSP generation in the TMS320C6000™ DSP platform. The C62x™ DSP devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The TMS320C62x™ DSP offers cost-effective solutions to high-performance DSP-programming challenges. The TMS320C6202/02B has a performance capability of up to 2400 million instructions per second (MIPS) at 300 MHz. The C6202/02B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. These processors have 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6202/02B can produce two multiply-accumulates (MACs) per cycle. This gives a total of 600 million MACs per second (MMACS) for the C6202/02B device. The C6202/02B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6202/02B devices program memory consists of two blocks, with a 128K-byte block configured as memory-mapped program space, and the other 128K-byte block user-configurable as cache or memory-mapped program space. Data memory for the C6202/02B consists of two 64K-byte blocks of RAM. The C6202/02B device has a powerful and diverse set of peripherals. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C62x™ devices have a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
300 MHz
90 °C
0 °C
3.3 V
1.5 V
384 kB
External
Fixed Point
384-FC/CSP (18x18)
Surface Mount
384-FBGA, FCCSPBGA
McBSP
Texas Instruments
TMS320C6746BZCED4
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320SPVC5470GHK
100 MHz
85 °C
0 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320F28026FPTQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 32KB (16K x 16) FLASH 48-LQFP (7x7)
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320VC5506ZHHR
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
Texas Instruments
TMS320VC5510AZGW1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
0 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM640GNZ400
400 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
I2C, McASP, McBSP
Texas Instruments
TMS320C6211BZFN167
The TMS320C62x™ DSPs (including the TMS320C6211/C6211B devices) compose one of the fixed-point DSP families in the TMS320C6000™ DSP platform. The TMS320C6211 (C6211) and TMS320C6211B (C6211B) devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1333 million instructions per second (MIPS) at a clock rate of 167 MHz, the C6211/C6211B device offers cost-effective solutions to high-performance DSP programming challenges. The C6211/C6211B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6211/C6211B can produce two multiply-accumulates (MACs) per cycle for a total of 333 million MACs per second (MMACS). The C6211/C6211B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6211/C6211B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6211/C6211B has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6211/C6211B devices) compose one of the fixed-point DSP families in the TMS320C6000™ DSP platform. The TMS320C6211 (C6211) and TMS320C6211B (C6211B) devices are based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1333 million instructions per second (MIPS) at a clock rate of 167 MHz, the C6211/C6211B device offers cost-effective solutions to high-performance DSP programming challenges. The C6211/C6211B DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6211/C6211B can produce two multiply-accumulates (MACs) per cycle for a total of 333 million MACs per second (MMACS). The C6211/C6211B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6211/C6211B uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6211/C6211B has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
167 MHz
90 °C
0 °C
3.3 V
1.8 V
72 kB
External
Fixed Point
256-BGA
Surface Mount
256-BGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320C6415TBZLZ6
600 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320VC5510AZAVA2
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
-40 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM368ZCEDF
Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver crystal clear multi-format video at up to 1080p H.264 at 30fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM368 DaVinci™ video processors from Texas Instruments Incorporated (TI). The DM368 is capable of achieving HD video processing at 1080p 30fps H.264 and is completely pin-to-pin compatible with the DM365 processors, using the same ARM926EJ-S core running at 432 MHz. This ARM9-based DM368 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This allows developers to obtain optimal performance from the ARM for their applications, including their multi-channel, multi-stream and multi-format needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can take advantage of the low power consumption and can ensure interoperability, as well as product scalability by taking advantage of the full suite of codecs supported on the DM368. Along with multi-format HD video, the DM368 also features a suite of peripherals saving developers on system cost and complexity to enable a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.565, BT1120. The DM368 also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to digital converter and many more features saving developers on overall system costs, as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
432 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C6655GZHA
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320DM6467CZUTAV
105 °C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320F28379DZWTQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
1.26 V
DMA, POR, PWM, WDT
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320F28067PZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320F28069FPZTR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320F2808GGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320LC543PZ2-40
40 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
Texas Instruments
TMS320C5502ZAVR300
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-NFBGA (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320C40GFL60
The '320C40 digital signal processors (DSPs) are 32-bit, floating-point processors manufactured in 0.72-um, double-level metal CMOS technology. The '320C40 is a part of the fourth generation of DSPs from Texas Instruments and is designed primarily for parallel processing. The '320C40 digital signal processors (DSPs) are 32-bit, floating-point processors manufactured in 0.72-um, double-level metal CMOS technology. The '320C40 is a part of the fourth generation of DSPs from Texas Instruments and is designed primarily for parallel processing.
60 MHz
85 °C
0 °C
5 V
5 V
8 kB
External
Floating Point
325-CPGA (47.25x47.25)
Through Hole
325-BFCPGA Exposed Pad
Communication Ports
Texas Instruments
TMS320F243PGEA
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 20MHz 16KB (8K x 16) FLASH 144-LQFP (20x20)
85 °C
-40 °C
144-LQFP (20x20)
Surface Mount
144-LQFP
16 KB
CANbus, EBI/EMI, SCI, SPI, UART/USART
16-Bit
FLASH
Internal
32 I/O
20 MHz
4.5 V
5.5 V
POR, PWM, WDT
C2xx DSP
8
1K x 8
10 b
Texas Instruments
TMS320F28035PAGTR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F2812PGFQ
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C28342ZFET
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device. The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI’s existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. The TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342, and TMS320C28341 devices, members of the Delfino™ MCU generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as C28346, C28345, C28344, C28343, C28342, and C28341, respectively. Device Comparison provides a summary of features for each device.
300 MHz
105 °C
-40 °C
3.3 V
1.2 V
196 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320C5533AZAY10
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.3 V
128 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C6657GZHA
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320C6424ZWTQ6
The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6424 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6424 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6424 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6424 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purposeinput/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6424 and the network. The C6424 EMAC supports 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6424 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6424 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
600 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, EBI/EMI, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320F28375DPZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
FLASH
102 K
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
32-Bit Dual-Core
Texas Instruments
TMS320DM648ZUTD7
The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM647/TMS320DM648 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM647, DM648 devices are based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8800 million instructions per second (MIPS) at a clock rate of 1.1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 4400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732). The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 4M-bit (DM648) or 2M-bit (DM647) memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes five configurable 16-bit video port peripherals (VP0, VP1, VP2, VP3, and VP4). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M), a VCXO interpolated control port (VIC); a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports (DM648) or one SGMII port (only DM647); a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface. The video port peripherals provide a glueless interface to common video decoder and encoder devices. The video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). The video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels (A and B) with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the video port peripherals, see the (literature number SPRUEM1). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
720 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320F28376DZWTT
C28x C2000™ C28x Delfino™, Functional Safety (FuSa) Microcontroller IC 32-Bit Dual-Core 200MHz 512KB (256K x 16) FLASH 337-NFBGA (16x16)
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
FLASH
86 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320DM365ZCE27
Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design. Developers can now deliver pixel-perfect images at up to 720p H.264 at 30fps in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM365 digital media processor based on DaVinci technology from Texas Instruments Incorporated (TI). With multi-format HD video, the DM365 also features a suite of peripherals saving developers on system costs. This ARM9-based DM365 device offers speeds up to 300 MHz and supports production-qualified H.264, MPEG-4, MPEG-2, MJPEG and VC1/WMV9 codecs providing customers with the flexibility to select the right video codec for their application. These codecs are driven from video accelerators offloading compression needs from the ARM core so that developers can utilize the most performance from the ARM for their application. Video surveillance designers achieve greater compression efficiency providing more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players and more can ensure interoperability as well as product scalability by taking advantage of the full suite of codecs supported on the DM365. Along with multi-format HD video, the DM365 enables seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM365 also offers a high level of integration with HD display support including, 3 built-in 10-bit HD Analog Video Digital to Analog Converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, Host Port Interface (HPI), Analog to Digital Converter, and many more features saving developers on overall system costs as well as real estate on their circuit boards allowing for a slimmer, sleeker design.
270 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C6201GJL200
200 MHz
90 °C
0 °C
3.3 V
1.8 V
128 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA Exposed Pad
Host Interface, McBSP
Texas Instruments
TMS320F28332PGFA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320F2810PBKA
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
85 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
CANbus, McBSP, SCI, SPI, UART/USART
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320VC5506GHH
108 MHz
85 °C
-40 °C
3 V, 3.3 V
1.2 V
128 kB
External
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
Texas Instruments
TMS320DM8168CCYGA2
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
105 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320C28344ZFEQ
300 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
260 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Automotive
AEC-Q100
Texas Instruments
TMS320DM6467TCUTD1
The TMS320DM6467T (also referenced as DM6467T) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6467T enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467T provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units— two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467T also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467T core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 66-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467T and the network. The DM6467T EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467T to easily control peripheral devices and/or communicate with host processors. The DM6467T also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467T has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320DM6467T (also referenced as DM6467T) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices. The DM6467T enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467T provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units— two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467T also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467T core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 66-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467T and the network. The DM6467T EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467T to easily control peripheral devices and/or communicate with host processors. The DM6467T also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467T has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
1 GHz, 500 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.3 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320UC5405ZQW
80 MHz
100 °C
-40 °C
1.8 V, 2.5 V, 3.3 V
1.8 V
32 kB
ROM
8 kB
Fixed Point
143-BGA MICROSTAR JUNIOR (7x7)
Surface Mount
143-VFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6412AGNZA5
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
105 °C
-40 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320F28050PNQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 32KB (16K x 16) FLASH 80-LQFP (12x12)
125 °C
-40 °C
Surface Mount
80-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28376DPTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
FLASH
86 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320C6203BGNZ300
300 MHz
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA
McBSP
Texas Instruments
TMS320BC57SPGE80
80 MHz
70 °C
0 °C
5 V
5 V
14 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, SSP
Texas Instruments
TMS320F28032RSHT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
64 KB
32-Bit Single-Core
FLASH
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
12 b
Texas Instruments
TMS320F2812ZAYS
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C5535AZHH05
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
320 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, LCD, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320LF2403APAG4
C2xx DSP C2000™ C24x 16-Bit Microcontroller IC 16-Bit 40MHz 32KB (16K x 16) FLASH 64-TQFP (10x10)
85 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32 KB
16-Bit
FLASH
2 K
Internal
21
40 MHz
POR, PWM, WDT
C2xx DSP
8
CANbus, SCI, SPI, UART/USART
10 b
Texas Instruments
TMS320DM8148BCYE0
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320C5534AZHH05
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
2 Mbit
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320BC52PZ80
80 MHz
70 °C
0 °C
5 V
5 V
2 kB
ROM
8 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP
Texas Instruments
TMS320C5515AZCHA12
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the device includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes three integrated LDOs (DSP_LDO, ANA_LDO, and USB_LDO) to power different sections of the device. The DSP_LDO can provide 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. To allow for lowest power operation, the programmer can shutdown the internal DSP_LDO cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The ANA_LDO is designed to provide 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management circuits (VDDA_ANA). The USB_LDO provides 1.3 V to USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
120 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320F28374DZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
FLASH
86 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
Texas Instruments
TMS320C6415TGLZ7
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28334ZAYA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
179-NFBGA (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320DM642AGDKA6
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
600 MHz
105 °C
-40 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320F2810PBKS
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices. The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810, F2811, and F2812-Q1, respectively. F281x denotes all three devices.
125 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
CANbus, McBSP, SCI, SPI, UART/USART
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320DM642AZDK5
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
500 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320F28379DZWTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320VC5502ZAV300
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
300 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-NFBGA (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320F2806ZGMSR
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 64KB (32K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
64 KB
32-Bit Single-Core
FLASH
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28065UPZPS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 100-HTQFP (14x14)
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
USB
Texas Instruments
TMS320DM6467CZUTV
85 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320C6455BZTZ7
720 MHz
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320LC50PQA
85 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320C6415TBGLZ7
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6414TBZLZA6
600 MHz
105 °C
-40 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6414TBZLZ7
720 MHz
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C6205DZWT200
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320DM643AGNZ6
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320F2808PZS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6202GJLA233
233 MHz
105 °C
-40 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA Exposed Pad
McBSP
Texas Instruments
TMS320C5504AZCHA12
The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries. The device is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). This device also includes three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device includes one integrated LDO (ANA_LDO) to provide regulated 1.3 V to the DSP PLL (VDDA_PLL).Note:ANA_LDO can only provide a regulated 1.3 V. When the DSP PLL requires 1.4 V (PLLOUT > 120 MHz), an external supply is required to supply 1.4 V to the DSP PLL (VDDA_PLL). The device is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, and various math functions) as well as chip support libraries.
120 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.05 V, 1.3 V
2 Mbit
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, MMC/SD, SPI, UART/USART, USB
128 kB
Texas Instruments
TMS320F28232PTPQ
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
32-Bit Single-Core
FLASH
26 K
Internal
88
100 MHz
1.71 V
1.89 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C5532AZHHA10
100 MHz
85 °C
-40 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
64 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320F28075PZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
41
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
Texas Instruments
TMS320F280220DAT
The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency.
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
16 KB
32-Bit Single-Core
FLASH
3 K
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
6
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6746EZWTD4
The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320DM6467ZUTAV
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320VC5441GGURZE
133 MHz
85 °C
0 °C
3.3 V
1.6 V
1.25 MB
External
Fixed Point
169-BGA MicroStar
Surface Mount
169-LFBGA
Host Interface, McBSP
12
12
Texas Instruments
TMS320F2802PZA-60
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM355CZCEA21
The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
216 MHz
100 °C
-40 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320F28063UPNT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 80-LQFP (12x12)
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
34 K
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
USB
Texas Instruments
TMS320C44GFW60
60 MHz
85 °C
0 °C
5 V
5 V
8 kB
External
Floating Point
388-BGA (35x35)
Surface Mount
388-BBGA
Communication Ports
Texas Instruments
TMS320C28343ZFET
200 MHz
105 °C
-40 °C
3.3 V
1.1 V
260 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
CAN, EBI/EMI, I2C, McBSP, SCI, SPI
16 kB
Texas Instruments
TMS320C40GFL40
40 MHz
85 °C
0 °C
5 V
5 V
8 kB
External
Floating Point
325-CPGA (47.25x47.25)
Through Hole
325-BFCPGA Exposed Pad
Communication Ports
Texas Instruments
TMS320VC5410AZGU12
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
128 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6672ACYP
The TMS320C6672 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with two C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 2.5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6672 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6672 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with two C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 2.5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6672 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
5.125 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320VC33PGEA120
The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031). The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031).
60 MHz
100 °C
-40 °C
3.3 V
1.8 V
136.25 kB
External
Floating Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Serial Port
Texas Instruments
TMS320DM6467ZUT7
364.5 MHz, 729 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320BC51PZ80
80 MHz
70 °C
0 °C
5 V
5 V
4 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
BSP, SSP, TDM
16 kB
Texas Instruments
TMS320F28378DPTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
CANbus, I2C, SCI, SPI, UART/USART, uPP, USB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
A/D 20x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320C6745BPTP3
375 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F2808LITE
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 100MHz 128KB (64K x 16) FLASH
125 °C
-40 °C
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6747DZKBT3
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
125 ¯C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C54CSTZGU
120 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP, UART
256 kB
Texas Instruments
TMS320F28375SPZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
82K x 16
Texas Instruments
TMS320F28069UPZPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
USB
Texas Instruments
TMS320C6455DZTZ2
1.2 GHz
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320C6655CZHA25
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
1.25 GHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320C6711DGDP250
The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C67x™ DSPs (including the TMS320C6711, TMS320C6711B, TMS320C6711C, TMS320C6711D devices) compose the floating-point DSP family in the TMS320C6000™ DSP platform. The C6711, C6711B, C6711C, and C6711D devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. With performance of up to 1200 million floating-point operations per second (MFLOPS) at a clock rate of 200 MHz or up to 1500 MFLOPS at a clock rate of 250 MHz, the C6711D device also offers cost-effective solutions to high-performance DSP programming challenges. The C6711D DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711D can produce two MACs per cycle for a total of 400 MMACS. The C6711D DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6711D device uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals. The C6711D has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
250 MHz
90 °C
0 °C
3.3 V
1.26 V
72 kB
External
Floating Point
272-BGA
Surface Mount
272-BBGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320C25FNLR
This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design. This data sheet provides complete design documentation for the second-generation devices of the TMS320 family. This facilitates the selection of the devices best suited for user applications by providing all specifications and special features for each TMS320 member. This data sheet is divided into four major sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data. In each of these sections, generic information is presented first, followed by specific device information. An index is provided for quick reference to specific information about a device. The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set provide speed and flexibility to produce a MOS microprocessor family that is capable of executing more than 12.5 MIPS (million instructions per section). The TMS320 family optimizes speed by implementing functions in hardware that other processors implement through microcode or software. This hardware-intensive approach provides the design engineer with processing power previously unavailable on a single chip. The TMS320 family consists of three generations of digital signal processors. The first generation contains the TMS32010 and its spinoffs. The second generation includes the TMS32020, TMS320C25, and TMS320E25, which are described in this data sheet. The TMS320C30 is a floating-point DSP device designed for even higher performance. Many features are common among the TMS320 processors. Specific features are added in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained throughout the family to protect the user's investment in architecture. Each processor has software and hardware tools to facilitate rapid design.
50 MHz
70 °C
0 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
68-PLCC
Surface Mount
68-LCC (J-Lead)
Serial Port
24.23
24.23
Texas Instruments
TMS320F28374SZWTTR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
512 KB
32-Bit Single-Core
FLASH
66 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
12 b, 12 b
3 b, 24 b
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
Texas Instruments
TMS320C6421ZWT5
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6722BRFP250
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
250 MHz
90 °C
0 °C
3.3 V
1.2 V
160 kB
Floating Point
144-HTQFP (20x20)
Surface Mount
144-TQFP Exposed Pad
EBI/EMI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320VC5410AGGU12
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
128 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6474FCUNA2
The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The TMS320C64x+ DSPs (including the TMS320C6474 device) are the highest-performance multicore DSP generation in the TMS320C6000™ DSP platform. The C6474 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI). The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform.
1.2 GHz
95 °C
-40 °C
1.1 V, 1.8 V
1.1 V
3.168 MB
Fixed Point
561-FC/CSP (23x23)
Surface Mount
561-BFBGA, FCCSPBGA
Ethernet MAC, I2C, McBSP
64 kB
Texas Instruments
TMS320C6457CCMHA
The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
100 °C
-40 °C
1.1 V, 1.8 V, 3.3 V
1.1 V
2.1 MB
Fixed Point
688-FCBGA (23x23)
Surface Mount
688-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI, UTOPIA
Texas Instruments
TMS320BC52PJ57
57 MHz
70 °C
0 °C
5 V
5 V
2 kB
ROM
8 kB
Fixed Point
100-QFP (20x14)
Surface Mount
100-BQFP
BSP, SSP
Texas Instruments
TMS320C6670ACYP
100 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320F28035RSHT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
32-Bit Single-Core
FLASH
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
12 b
Texas Instruments
TMS320R2811PBKA
The TMS320R2811 and TMS320R2812 devices, members of the TMS320C28x™ DSP generation, are highly integrated, high-performance solutions for demanding control applications. The functional blocks and the memory maps are described in Section 3, Functional Overview. Throughout this document, TMS320R2811 and TMS320R2812 are abbreviated as R2811 and R2812, respectively. The TMS320R2811 and TMS320R2812 devices, members of the TMS320C28x™ DSP generation, are highly integrated, high-performance solutions for demanding control applications. The functional blocks and the memory maps are described in Section 3, Functional Overview. Throughout this document, TMS320R2811 and TMS320R2812 are abbreviated as R2811 and R2812, respectively.
85 °C
-40 °C
128-LQFP (14x14)
Surface Mount
128-LQFP
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28235PGFA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28054PNS
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC33PGE150
The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031). The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-µm four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments. The TMS320C3x’s internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320VC33 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. The TMS320VC33 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are the results of these features. General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor. High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. The TMS320VC33 is a superset of the TMS320C31. Designers now have an additional 1M bits of on-chip SRAM, a maximum throughput of 150 MFLOPS, and several I/O enhancements that allow easy upgrades to current systems or creation of new baselines. This data sheet provides information required to fully utilize the new features of the TMS320VC33 device. For general TMS320C3x architecture and programming information, see theTMS320C3x User’s Guide(literature number SPRU031).
75 MHz
90 °C
0 °C
3.3 V
1.8 V
136.25 kB
External
Floating Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Serial Port
Texas Instruments
TMS320F2809PZS
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6654CZHA8
The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.
850 MHz
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Variable
Texas Instruments
TMS320F28069FPFPQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320DM8127SCYE3
TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip
1 GHz, 750 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320C6412AZNZA5
The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x™DSPs (including the TMS320C6412 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6412 (C6412) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C6412 device offers cost-effective solutions to high-performance DSP programming challenges. The C6412 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in applications and extend the parallelism of the VelociTI™ architecture. The C6412 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6412 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6412 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a- 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The ethernet media access controller (EMAC) provides an efficient interface between the C6412 DSP core processor and the network. The C6412 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The C6412 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO port, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320C6412 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The C6412 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
500 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, McBSP, PCI
Texas Instruments
TMS320DM270ZHK
Texas Instruments
TMS320DM648ZUT1
1.1 GHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
576 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320C6457CCMH8
The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6457 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6457 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6457 device offers cost-effective solutions to high-performance DSP programming challenges. The C6457 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle. The C6457 device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging. The C6457 DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the C6457 device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp. The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the C6457 DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface. The C6457 device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller. The C6457 device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
850 MHz
100 °C
0 °C
1.1 V, 1.8 V, 3.3 V
1.1 V
2.1 MB
Fixed Point
688-FCBGA (23x23)
Surface Mount
688-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI, UTOPIA
Texas Instruments
TMS320C5532AZAY10
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.3 V
64 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320C6415TBZLZ1
90 °C
0 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28034PAGT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
32-Bit Single-Core
FLASH
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320VC5416ZWS160
The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
2 Mbit
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6674ACYP
The TMS320C6674 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6674 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6674 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with four C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 5 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6674 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320VC5507ZAYR
The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.6 V
128 kB
Fixed Point
179-NFBGA (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320C6678AXCYP25
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.25 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320C6211GFN150
90 °C
0 °C
3.3 V
1.8 V
72 kB
External
Fixed Point
256-BGA
Surface Mount
256-BGA
Host Interface, McBSP
27
27
Texas Instruments
TMS320C6202BZNY250
250 MHz
90 °C
0 °C
3.3 V
1.5 V
384 kB
External
Fixed Point
384-FC/CSP (18x18)
Surface Mount
384-FBGA, FCCSPBGA
McBSP
Texas Instruments
TMS320C6678AXCYP
The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6678 Multicore Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with eight C66x CorePac DSPs, each core runs at 1.0 to 1.25 GHz enabling up to 10 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6678 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320C6678XCYP
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
8.5 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
10/100/1000 Ethernet, EBI/EMI, I2C, PCIe, SPI, TSIP, UART
128 kB
Texas Instruments
TMS320F28335ZJZS
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320F28377DPTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320DM6437ZDU4
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320DM8127SCYED1
TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip TMS320DM8127 DaVinci Digital Media processors are highly integrated, programmable platforms that leverage the technology to meet the processing needs of the following applications to name a few:IP Network Cameras Industrial Automation Network Cameras Stereo Cameras Video Surveillance HD Video Conferencing Car Black BoxHome Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 256KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping, AVB, and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailbox The TMS320DM8127 DaVinci Digital Media processors also include a high-definition video and imaging coprocessor 2 (HDVICP2) to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, the TMS320DM8127 DaVinci Digital Media processors have a complete set of development tools for both the ARM and DSP which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows™ debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip
90 °C
-40 °C
1.5 V, 1.8 V, 3.3 V
1.15 V
832 kB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320DM643AZNZA5
500 MHz
105 °C
-40 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320C5545AZQW12
120 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V, 1.3 V
320 kB
Fixed Point
118-BGA MICROSTAR JUNIOR (7x7)
Surface Mount
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320DM369ZCE
Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a
432 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320C6421ZDU4
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM6437ZWTQ6
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space-384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1 peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6437. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 and the network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6437 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
600 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320F28067PFPQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-HTQFP (12x12)
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320DM369ZCEDF
Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a Developers can now deliver crystal-clear multiformat video at up to 1080 p H.264 at 30 fps (encode and closed-looped decode) in their digital video designs without concerns of video format support, constrained network bandwidth, limited system storage capacity or cost with the new TMS320DM369 DaVinci™ video processors from TI. The DM369 device is uniquely capable of running TI’s third-generation noise filtering technology while achieving low-light HD H.264 720p30 video compression and is pin-to-pin compatible with the DM365 processors, using the same ARM ARM926EJ-S core running at 432 MHz. This ARM9-based DM369 device supports production-qualified H.264BP/MP/HP, MPEG-4, MPEG-2, MJPEG, and WMV9 (VC-1) codecs providing customers with the flexibility to select the correct video codec for their application. These codecs run on independent coprocessors (HDVICP and MJCP) offloading all compression needs from the main ARM core. This lets developers obtain optimal performance from the ARM for their applications, including their multichannel, multistream, and multiformat needs. Video surveillance designers achieve greater compression efficiency to provide more storage without straining the network bandwidth. Developers of media playback and camera-driven applications, such as video doorbells, digital signage, digital video recorders, portable media players, and more can take advantage of the low power consumption and can ensure interoperability and product scalability by taking advantage of the full suite of codecs supported on the DM369 device. Along with multiformat HD video, the DM369 processor also features a suite of peripherals that reduces system cost and complexity, thus enabling a seamless interface to most additional external devices required for video applications. The image sensor interface is flexible enough to support CCD, CMOS, and various other interfaces such as BT.656, BT1120. The DM369 device also offers a high level of integration with HD display support, including three built-in 10-bit HD analog video digital-to-analog converters (DACs), DDR2/mDDR, Ethernet MAC, USB 2.0, integrated audio, host port interface (HPI), analog-to-digital converter (ADC), and many more features that reduce overall system costs and save real estate on circuit boards, thus allowing for a
432 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.35 V
56 kB
Digital Media System-on-Chip (DMSoC)
338-BGA (13x13)
Surface Mount
338-LFBGA
EBI/EMI, Ethernet, I2C, McBSP, SPI, UART, USB
16 kB
Texas Instruments
TMS320F28377DZWTQR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
FLASH
102 K
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
Automotive
AEC-Q100
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
12x16b, A/D 24x12b, D/A 3x12b
32-Bit Dual-Core
Texas Instruments
TMS320C6745DPTP4
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
456 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM8169MCYG4
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
1 GHz
1.2 GHz
Texas Instruments
TMS320C6746BZCE3
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320F28376DPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
FLASH
86 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320C6748BZCED4E
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6414TBGLZA7
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
720 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320DM6433ZWTQ5
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320F28051PNT
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28065PZPQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 128KB (64K x 16) FLASH 100-HTQFP (14x14)
125 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320UC5405GQW
Texas Instruments
TMS320DM6433ZWT6
600 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320DM6467ZUTD7
364.5 MHz, 729 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320VC5409ZGU100
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28034PNS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28076PTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
97
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
1, 17
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
12 b, 12 b
Texas Instruments
TMS320C6203BZNZ300
300 MHz
90 °C
0 °C
3.3 V
1.5 V
896 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA
McBSP
Texas Instruments
TMS320C6455BZTZ
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320DM8168SCYG
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320C6204GLW200
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
340-BGA
Surface Mount
340-FBGA Exposed Pad
McBSP
Texas Instruments
TMS320C5517AZCH20
This device is a member of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and is designed for low active and standby power consumption. The device is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16 independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The GPIO functions along with the 10-bit SAR ADC to provide sufficient pins for status, interrupts, and bit I/O for keyboards, and media interfaces. Serial media is supported through two multimedia card and secure digital (MMC and SD) peripherals, three Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one master and slave multichannel serial port interface (McSPI) with up to three chip selects, one multichannel serial port (McBSP), one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories, such as EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include a configurable 16-bit universal host-port interface (UHPI), a high-speed universal serial bus (USB2.0) device mode only, a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device also includes a tightly coupled FFT hardware accelerate that supports 8- to 1024-point (by power of 2) real- and complex-valued FFTs and three integrated LDOs to power different sections of the device, except CVDDRTCwhich requires an external power source: ANA_LDO to provide 1.3 V to the SAR and power-management circuits (VDDA_ANA), DSP_LDO to provide 1.3 or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed, and USB_LDO to provide 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The device is supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and a large third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. This device is a member of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and is designed for low active and standby power consumption. The device is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16 independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The GPIO functions along with the 10-bit SAR ADC to provide sufficient pins for status, interrupts, and bit I/O for keyboards, and media interfaces. Serial media is supported through two multimedia card and secure digital (MMC and SD) peripherals, three Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one master and slave multichannel serial port interface (McSPI) with up to three chip selects, one multichannel serial port (McBSP), one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface The device peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories, such as EPROM, NOR, NAND, and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM (SDRAM) and mobile SDRAM (mSDRAM). Additional peripherals include a configurable 16-bit universal host-port interface (UHPI), a high-speed universal serial bus (USB2.0) device mode only, a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. The device also includes a tightly coupled FFT hardware accelerate that supports 8- to 1024-point (by power of 2) real- and complex-valued FFTs and three integrated LDOs to power different sections of the device, except CVDDRTCwhich requires an external power source: ANA_LDO to provide 1.3 V to the SAR and power-management circuits (VDDA_ANA), DSP_LDO to provide 1.3 or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed, and USB_LDO to provide 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). The device is supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and a large third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The device is also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
200 MHz
70 °C
-10 °C
1.8 V, 2.75 V, 3.3 V
1.05 V, 1.3 V, 1.4 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
EBI/EMI, I2C, I2S, McBSP, McSPI, MMC/SD, SPI, UART/USART, UHPI, USB
128 kB
Texas Instruments
TMS320C6202BGNZ250
250 MHz
90 °C
0 °C
3.3 V
1.5 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA
McBSP
Texas Instruments
TMS320C44GFWA
50 MHz
115 °C
-40 °C
5 V
5 V
8 kB
External
Floating Point
388-BGA (35x35)
Surface Mount
388-BBGA
Communication Ports
Texas Instruments
TMS320F28027DAQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 64KB (32K x 16) FLASH 38-TSSOP
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
60 MHz
1.71 V
1.995 V
C28x
12 bits
7
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320F28031RSHT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 60MHz 64KB (32K x 16) FLASH 56-VQFN (7x7)
105 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F280270DAS
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 50MHz 32KB (16K x 16) FLASH 38-TSSOP
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
6
I2C, SCI, SPI, UART/USART
4K x 16
Texas Instruments
TMS320C5420GGUA200
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
384 kB
External
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
Texas Instruments
TMS320C6746EZCE3
The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320C6748BZWTA3E
375 MHz
105 °C
-40 °C
1.8 V, 3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM355CZCE216
The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The DM355 is a highly integrated, programmable platform for digital still camera, digital photo frames, IP security cameras, 4-channel digital video recorders, video door bell application, and other low cost portable digital video applications. Designed to offer portable video designers and manufacturers the ability to produce affordable portable digital video solutions with high picture quality, the DM355 combines high performance MPEG4 HD (720p) codecs and JPEG codecs up to 50M pixels per second, high quality, and low power consumption at a very low price point. The DM355 also enables seamless interface to most additional external devices required for a complete digital camera implementation. The interface is flexible enough to support various types of CCD and CMOS sensors, signal conditioning circuits, power management, DDR/mDDR memory, SRAM, NAND, shutter, Iris and auto-focus motor controls, etc. The DM355 processor core is an ARM926EJ-S RISC processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit and 16-bit instructions and processes 32-bit, 16-bit, and 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: DM355 performance is enhanced by its MPEG4/JPEG coprocessor. The MPEG4/JPEG coprocessor performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The MPEG4/JPEG coprocessor supports MPEG4 SP at HD (720p), D1, VGA, SIF encode/decode resolutions and JPEG encode/decode up to 50M pixels per second. The DM355 device has a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: The VPFE port provides an interface for CCD/CMOS imager modules and video decoders. The VPBE provides hardware On Screen Display (OSD) support and composite NTSC/PAL and digital LCD output. The DM355 peripheral set includes: For software development support the DM355 has a complete set of ARM development tools which include: C compilers, assembly optimizers to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
216 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320DM8147SCYE0
TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU. TMS320DM814x DaVinci video processors are highly integrated, programmable platforms that leverage the DaVinci processor technology to meet the processing needs of the following applications to name a few: HD Video Conferencing - Skype endpoints Video Surveillance DVRs IP Netcam Digital Signage Media Players and Adapters Mobile Medical Imaging Network Projectors Home Audio and Video Equipment The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device also combines programmable video and audio processing with a highly integrated peripheral set. The TMS320DM814x DaVinci video processors also present OEMs and ODMs with new levels of processor scalability and software reuse. An OEM or ODM that used the AM387x processors in a design and can make a similar product with added features could scale up to the pin-compatible and software-compatible TMS320DM814x processors from TI. The TMS320DM814x DaVinci video processors add a powerful C674x DSP core along with a video encoder and decoder to the hardware on the AM38x. Additionally, OEMs or ODMs that have used the AM387x or DM814x processors and find a need for a faster ARM and DSP core performance could scale up to the software-compatible AM389x or TMS320DM816x devices with higher core speeds. Programmability is provided by an ARM Cortex-A8 RISC CPU with Neon extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM lets developers keep control functions separate from A/V algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-Bit RISC Core with Neon floating-point extension includes: 32KB of Instruction cache; 32KB of Data cache; 512KB of L2 Cache; 48KB of Boot ROM; and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD Video Processing Subsystem Dual Port Gigabit Ethernet MACs (10/100/1000 Mbps) [Ethernet Switch] with MII/RMII/GMII/RGMII and MDIO interface supporting IEEE 1588 Time-Stamping and Industrial Ethernet ProtocolsTwo USB ports with integrated 2.0 PHY PCIe x1 GEN2 Compliant interfaceTwo 10-serializer McASP audio serial ports (with DIT mode)Four quad-serilaizer McASP audio serial ports (with DIT mode)One McBSP multichannel buffered serial portSix UARTs with IrDA and CIR supportFour SPI serial interfacesThree MMC/SD/SDIO serial interfacesFour I2C master and slave interfaces Parallel Camera Interface (CAM)Up to 128 General-Purpose I/Os (GPIOs)Eight 32-bit general-purpose timers System watchdog timer Dual DDR2, and DDR3 SDRAM interfacesFlexible 8- or 16-bit asynchronous memory interfaceTwo Controller Area Network (DCAN) modulesSpin LockMailboxSerial Hard Disk Drive Interface (SATA 300) The TMS320DM814x DaVinci video processors also include a high-definition video and imaging coprocessor 2 (HDVICP2), and an SGX530 3D graphics engine to off-load many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. Additionally, it has a complete set of development tools for both the ARM and DSP, which include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft® Windows® debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform and is code-compatible with previous generation C64x Fixed-Point and C67x Floating-Point DSP generation. The C674x Floating-Point DSP processor uses 32KB of L1 program memory with EDC and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining memory is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining memory is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM with ECC, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through an MMU.
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320VC5410APGE16
The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5410A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5410A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5410A also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
128 kB
ROM
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6421ZWTQ5
The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320C6421 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6421 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital signal processor applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in telecom, audio, and industrial applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The C6421 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The C6421 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 128K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 384K-bit memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6421 and the network. The C6421 EMAC supports 10Base-T and 100Base-TX or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow C6421 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6421 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
500 MHz
125 ¯C
-40 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
96 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6747DZKB3
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
90 °C
0 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320LC206PZ80
The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages: The Texas Instruments (TITM) TMS320C206digital signal processors (DSPs) are fabricated with static CMOS integrated-circuit technology. The architectural design is based upon that of the TMS320C20x series and is optimized for low-power operation. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C206. The 'C206 offers these advantages:
80 MHz
70 °C
0 °C
3.3 V
3.3 V
9 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
SSP, UART
64 kB
Texas Instruments
TMS320C6671ACYP25
The TMS320C6671 Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with the C66x CorePac DSP runing at 1.0 to 1.25 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6671 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. The TMS320C6671 Fixed and Floating Point Digital Signal Processor is based on TI's KeyStone multicore architecture. Integrated with the C66x CorePac DSP runing at 1.0 to 1.25 GHz. The device supports high-performance signal processing applications such as mission critical, medical imaging, test, and automation. The C6671 platform is power efficient and easy to use. The C66x CorePac DSP is fully backward compatible with all existing C6000 family of fixed and floating point DSPs.
1.25 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
4.56 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320C6746EZWT4
The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320DM6437ZWT5
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, PCI, UART
64 kB
Texas Instruments
TMS320F28335ZHHA
C28x C2000™ C28x Delfino™ Microcontroller IC 32-Bit Single-Core 150MHz 512KB (256K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320R2812PGFS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz ROMless 176-LQFP (24x24)
125 °C
-40 °C
176-LQFP (24x24)
Surface Mount
176-LQFP
32-Bit Single-Core
ROMless
20 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6416TBGLZ6
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
600 MHz
90 °C
0 °C
3.3 V
1.1 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320VC5510AGPHA2
200 MHz
85 °C
-40 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28022PTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
50 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320C6746BZWT3
375 MHz
90 °C
0 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320C6414TBGLZA8
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
850 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320DM647ZUT1
1.1 GHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
320 kB
Fixed Point
529-FCBGA (19x19)
Surface Mount
529-BFBGA
Host Interface, I2C, McASP, PCI, SPI, UART
64 kB
Texas Instruments
TMS320ACLZGU
- Microcontroller IC
Texas Instruments
TMS320DM642GDK600
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FC/CSP (23x23)
Surface Mount
548-BFBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320C6727BZDH275
The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x). The TMS320C672x is the next generation of Texas Instruments' C67x generation of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727B, TMS320C6726B, TMS320C6722B, and TMS320C6720 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 350 MHz, the CPU is capable of a maximum performance of 2800 MIPS/2100 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726B, C6722B, and C6720 and 32 bits wide on the C6727B. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726B, C6722B, and C6720 support SDRAM devices up to 128M bits. The C6727B extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727B. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722B and C6720. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. (1)Throughout the remainder of the document, TMS320C6727B (or C6727B), TMS320C6726B (or C6726B), TMS320C6722B (or C6722B), and/or TMS320C6720 (or C6720) will be referred to as TMS320C672x (or C672x).
275 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320F28034RSHT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
56-VQFN (7x7)
Surface Mount
56-VFQFN Exposed Pad
32-Bit Single-Core
FLASH
Internal
26
60 MHz
1.71 V
1.995 V
C28x
13
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
12 b
Texas Instruments
TMS320DM6435ZDU5
500 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
376-BGA (23x23)
Surface Mount
376-BBGA Exposed Pad
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM6435ZWT4
The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6435 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6435 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6435 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6435 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memory space that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D) consists of a 640K-bit memory space–384K-bit of which is mapped memory and 256K-bit of which can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1M-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port (VPFE); a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6435 device includes a Video Processing Subsystem (VPSS) with a configurable video/imaging front-end input peripheral used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6435. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6435 and the network. The DM6435 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C and VLYNQ ports allow DM6435 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6435 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.05 V, 1.2 V
240 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, HPI, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320DM8167BCYG2
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
1 GHz
1.2 GHz
Texas Instruments
TMS320VC5409GGU100
100 MHz
100 °C
-40 °C
3.3 V
1.8 V
64 kB
ROM
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F2812GHHQ
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
125 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6657CZH25
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
1.25 GHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320F28335ZJZA
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
85 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Texas Instruments
TMS320C6745BPTPA3
375 MHz
105 °C
-40 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320DM8147BCYE2
1 GHz, 700 MHz
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
Texas Instruments
TMS320F28054PNQ
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28021DAS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
5 K
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320VC5502ZAV200
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-NFBGA (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320VC5421PGE200
100 MHz
85 °C
0 °C
3.3 V
1.8 V
512 kB
ROM
8 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, McBSP
Texas Instruments
TMS320LC545APBK-66
66 MHz
100 °C
-40 °C
3.3 V
3.3 V
6 kB
ROM
Fixed Point
128-LQFP (14x14)
Surface Mount
128-LQFP
BSP, Duplex Serial Port, Host Interface
48 kB
Texas Instruments
TMS320F2801ZGMS
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 32KB (16K x 16) FLASH 100-BGA MICROSTAR (10x10)
125 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM643AZDK6
The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
600 MHz
90 °C
0 °C
3.3 V
1.4 V
288 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320C25FNL50
50 MHz
70 °C
0 °C
5 V
5 V
1 kB
ROM
8 kB
Fixed Point
68-PLCC
Surface Mount
68-LCC (J-Lead)
Serial Port
24.23
24.23
Texas Instruments
TMS320F28068MPFPQ
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 80-HTQFP (12x12)
125 °C
-40 °C
80-HTQFP (12x12)
Surface Mount
80-TQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
Internal
40
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
12 bits
12
CANbus
UART/USART
SCI
SPI
I2C
McBSP
Automotive
AEC-Q100
Texas Instruments
TMS320DM310ZHK22
Texas Instruments
TMS320C5532AZAY05
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
64 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320C6727BZDH250
The TMS320C672x is the next generation of Texas Instruments’ C67x™ family of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727, TMS320C6726, and TMS320C6722 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 300 MHz, the CPU is capable of a maximum performance of 2400 MIPS/1800 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion.The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726 and C6722, and 32 bits wide on the C6727. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726 and C6722 support SDRAM devices up to 128M bits. The C6727 extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF. The TMS320C672x is the next generation of Texas Instruments’ C67x™ family of high-performance 32-/64-bit floating-point digital signal processors. The TMS320C672x includes the TMS320C6727, TMS320C6726, and TMS320C6722 devices.(1) Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. At 300 MHz, the CPU is capable of a maximum performance of 2400 MIPS/1800 MFLOPS by executing up to eight instructions (six of which are floating-point instructions) in parallel each cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic. Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program/data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices. The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported: The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program/data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM. High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections). Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme. The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU. dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform Data Movement Acceleration. The Data Movement Accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C672x DSPs. The dMAX allows movement of data to/from any addressable memory space including internal memory, peripherals, and external memory. The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer/FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to/from different source/destinations). External Memory Interface (EMIF) for Flexibility and Expansion.The external memory interface on the C672x supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide on the C6726 and C6722, and 32 bits wide on the C6727. SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks. The C6726 and C6722 support SDRAM devices up to 128M bits. The C6727 extends SDRAM support to 256M-bit and 512M-bit devices. Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines. The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes. Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C672x UHPI: The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C672x; this page can be changed, but only by the C672x CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement. The UHPI is only available on the C6727. Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) - Up to 16 Stereo Channels I2S.The multichannel audio serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices. It supports the ubiquitous IIS format as well as many variations of this format, including time division multiplex (TDM) formats with up to 32 time slots. Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic. As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion. The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory. McASP2 is not available on the C6722. Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C672x includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C672x DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device. The two I2C serial ports are pin-multiplexed with the SPI0 serial port. Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C672x DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals. The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput. The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1. Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes: Clock Generation (PLL and OSC). The C672x DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin. The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF.
250 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, HPI, I2C, McASP, SPI
384 kB
Texas Instruments
TMS320C54CSTGWS
120 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP, UART
256 kB
Texas Instruments
TMS320LC542PGE2-40
The TMS320C54x, TMS320LC54x, and TMS320VC54x fixed-point, digital signal processor (DSP) families (hereafter referred to as the ’54x unless otherwise specified) are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors also provide an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. These DSP families also provide a highly specialized instruction set, which is the basis of the operational flexibility and speed of these DSPs. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the ’C54x, ’LC54x, and ’VC54x versions include the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320C54x, TMS320LC54x, and TMS320VC54x fixed-point, digital signal processor (DSP) families (hereafter referred to as the ’54x unless otherwise specified) are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors also provide an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. These DSP families also provide a highly specialized instruction set, which is the basis of the operational flexibility and speed of these DSPs. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the ’C54x, ’LC54x, and ’VC54x versions include the control mechanisms to manage interrupts, repeated operations, and function calls.
40 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320C6748EZWTD4E
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28055PNS
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320LC541PZ1-40
40 MHz
100 °C
-40 °C
3.3 V
3.3 V
10 kB
Fixed Point
100-LQFP (14x14)
Surface Mount
100-LQFP
Duplex Serial Port
56 kB
Texas Instruments
TMS320F28234PTPQ
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
256 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320F28023DAT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6202BZNZ300
300 MHz
90 °C
0 °C
3.3 V
1.5 V
384 kB
External
Fixed Point
352-FCBGA (27x27)
Surface Mount
352-BBGA, FCBGA
McBSP
Texas Instruments
TMS320VC5507ZHH
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
128 kB
Fixed Point
179-BGA MICROSTAR (12x12)
Surface Mount
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320VC5470ZHK
100 MHz
85 °C
0 °C
3.3 V
1.8 V
160 kB
External
Fixed Point
257-BGA MICROSTAR (16x16)
Surface Mount
257-LFBGA
I2C, McBSP, SPI, UART
Texas Instruments
TMS320C6747DZKBA3
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
105 °C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320ACLAGGU
- Microcontroller IC
Texas Instruments
TMS320F2801PZS-60
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
125 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
60 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM643AGNZ5
The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)-with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM643 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These two video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see theTMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM643 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.
500 MHz
90 °C
0 °C
3.3 V
1.2 V
288 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Texas Instruments
TMS320F2812ZHHA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 150MHz 256KB (128K x 16) FLASH 179-BGA MicroStar (12x12)
85 °C
-40 °C
179-BGA MICROSTAR (12x12)
Surface Mount
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
56
150 MHz
1.81 V
2 V
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6472ECTZA6
625 MHz
100 °C
-40 °C
1.8 V, 3.3 V
1.1 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320C6747BZKBD4
456 MHz
90 °C
-40 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320F28052FPNQ
C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time control MCUsare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device number. See Device Comparison for more details. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6455BGTZ7
720 MHz
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320F28377SZWTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
337-NFBGA (16x16)
Surface Mount
337-LFBGA
1 MB
32-Bit Single-Core
FLASH
Internal
169
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
82K x 16
12x16b, A/D 24x12b, D/A 3x12b
Texas Instruments
TMS320DM6446ZWT
85 °C
0 °C
1.8 V, 3.3 V
1.2 V
160 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
361-NFBGA (16x16)
Surface Mount
361-LFBGA
ASP, EBI/EMI, Host Interface, I2C, SPI, UART, USB
Texas Instruments
TMS320F28062FPZT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
32-Bit Single-Core
FLASH
26 K
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
Texas Instruments
TMS320DM6431ZWT3
The TMS320C64x+™ DSPs (including the TMS320DM6431 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6431 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 2400 million instructions per second (MIPS) at a clock rate of 300 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1200 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 2400 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6431 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6431 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of 32K-byte (KB) memory space that can be configured as mapped memory or direct mapped cache. The Level 1 data/memory memory/cache (L1D) consists of a 64KB memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 64KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6431 device includes a Video Processing Subsystem (VPSS) with a Video Processing Front-End (VPFE) input used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC). The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6431 and the network. The DM6431 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C port allows DM6431 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6431 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x+™ DSPs (including the TMS320DM6431 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6431 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 2400 million instructions per second (MIPS) at a clock rate of 300 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units–two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1200 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 2400 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732). The DM6431 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6431 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of 32K-byte (KB) memory space that can be configured as mapped memory or direct mapped cache. The Level 1 data/memory memory/cache (L1D) consists of a 64KB memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 64KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The DM6431 device includes a Video Processing Subsystem (VPSS) with a Video Processing Front-End (VPFE) input used for video capture. The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC). The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6431 and the network. The DM6431 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The I2C port allows DM6431 to easily control peripheral devices and/or communicate with host processors. The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6431 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
300 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
128 kB
Fixed Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
10/100 Ethernet MAC, I2C, McASP, McBSP, UART
64 kB
Texas Instruments
TMS320C6745DPTP3
The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The TMS320C6745/6747 device is a low-power digital signal processor based on a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The TMS320C6745/6747 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance . The TMS320C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory (TMS320C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI) [TMS320C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the TMS320C6745/6747 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320VC5510AGGW1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
0 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320F28068UPZT
C28x C2000™ C28x Piccolo™ Microcontroller IC 32-Bit Single-Core 90MHz 256KB (128K x 16) FLASH 100-LQFP (14x14)
105 °C
-40 °C
100-LQFP (14x14)
Surface Mount
100-LQFP
256 KB
32-Bit Single-Core
FLASH
Internal
54
90 MHz
1.71 V
1.995 V
Brown-out Detect/Reset, DMA, POR, PWM, WDT
C28x
CANbus
UART/USART
SCI
SPI
I2C
McBSP
12 b, 16
USB
Texas Instruments
TMS320F28335ZJZQR
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-BGA (15x15)
Surface Mount
176-BGA
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320C6743DPTP3
The C6743 device is a low-power digital signal processor based on C674x DSP core. The device consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The C6743 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance. The C6743 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 128-KB of memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; two multichannel audio serial ports (McASPs) with 14/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; two UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces (EMIFs): an asynchronous external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6743 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The C6743 device is a low-power digital signal processor based on C674x DSP core. The device consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The C6743 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring high processing performance. The C6743 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 128-KB of memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; two multichannel audio serial ports (McASPs) with 14/9 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; two UART interfaces (one with bothRTSandCTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces (EMIFs): an asynchronous external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6743 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
375 MHz
90 °C
0 °C
3.3 V
1.2 V
320 kB
External
Fixed/Floating Point
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
EBI/EMI, Ethernet MAC, I2C, McASP, SPI, UART
Texas Instruments
TMS320C6A8168ACYG2
1 GHz, 1.2 GHz
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
ROM
DSP+ARM®
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, McASP, McBSP, SPI, UART, USB
48 kB
Texas Instruments
TMS320LC542PGE1-50
50 MHz
100 °C
-40 °C
3.3 V
3.3 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320F28379DPTPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide 200MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xD microcontroller family features two CLA real-time control coprocessors. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be used to control torque and current loops. The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
1 MB
FLASH
102 K
Internal
97
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Dual-Core
20x12b, 9x16b
3x12b
Texas Instruments
TMS320F28020DAS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
32 KB
32-Bit Single-Core
FLASH
3 K
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6201GJCA200
200 MHz
105 °C
-40 °C
3.3 V
1.8 V
128 kB
External
Fixed Point
352-FCBGA (35x35)
Surface Mount
352-BBGA, FCBGA
Host Interface, McBSP
Texas Instruments
TMS320BC53PQ80
80 MHz
70 °C
0 °C
5 V
5 V
8 kB
ROM
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
32 kB
24.13
24.13
Texas Instruments
TMS320VC5416GWS120
The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls. The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The device also includes the control mechanisms to manage interrupts, repeated operations, and function calls.
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
2 Mbit
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM335ZCE216
216 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, EBI/EMI, I2C, SPI, UART, USB
Texas Instruments
TMS320C6654CZH8
The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. The C6654 and C6652 are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz for C6654 and 600 MHz for C6652. For developers of a broad range of applications, both C6654 and C6652 DSPs enable a platform that is power-efficient and easy to use. In addition, the C6654 and C6652 DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 27.2 GMACS per core and 13.6 GFLOPS per core (@850 MHz frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 and C6652 DSPs integrate a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1066 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including PCI Express Gen2 and Gigabit Ethernet (PCIe and Gigabit Ethernet are not supported on the C6652). This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. The C6654 and C6652 devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, and Multicore Shared Memory Controller. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access.
850 MHz
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
1.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320F28020PTT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
3 K
Internal
22
40 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320LC548PGE-66
The TMS320LC548 fixed-point, digital signal processor (DSP) (hereafter referred to as the '548) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. The processor also provides an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The '548 also utilizes a highly specialized instruction set, which is the basis of its operational flexibility and speed. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the '548 includes the control mechanisms to manage interrupts, repeated operations, and function calls. This data sheet contains the pin layouts, signal descriptions, and electrical specifications for the TMS320VC548 DSP. For additional information, see theTMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital Signal Processorsdata sheet (literature number SPRS039). The SPRS039 is considered a family functional overview and should be used in conjunction with this data sheet. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the 144-pin thin quad flatpack (TQFP). The letter B in front of CLKRn, FSRn, DRn, CLKXn, FSXn, and DXn pin names denotes buffered serial port (BSP), where n = 0 or 1 port. The letter T in front of CLKR, FSR, DR, CLKX, FSX, and DX pin names denotes time-division multiplexed (TDM) serial port. The pin assignments table to follow lists each signal quadrant and BGA ball pin number for the 144-pin BGA package. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the TMS320LC548GGU. The TMS320LC548 fixed-point, digital signal processor (DSP) (hereafter referred to as the '548) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. The processor also provides an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The '548 also utilizes a highly specialized instruction set, which is the basis of its operational flexibility and speed. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the '548 includes the control mechanisms to manage interrupts, repeated operations, and function calls. This data sheet contains the pin layouts, signal descriptions, and electrical specifications for the TMS320VC548 DSP. For additional information, see theTMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital Signal Processorsdata sheet (literature number SPRS039). The SPRS039 is considered a family functional overview and should be used in conjunction with this data sheet. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the 144-pin thin quad flatpack (TQFP). The letter B in front of CLKRn, FSRn, DRn, CLKXn, FSXn, and DXn pin names denotes buffered serial port (BSP), where n = 0 or 1 port. The letter T in front of CLKR, FSR, DR, CLKX, FSX, and DX pin names denotes time-division multiplexed (TDM) serial port. The pin assignments table to follow lists each signal quadrant and BGA ball pin number for the 144-pin BGA package. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the TMS320LC548GGU.
66 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320VC5409AZWS12
The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts, The TMS320VC5409A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5409A also includes the control mechanisms to manage interrupts,
120 MHz
100 °C
-40 °C
3.3 V
1.5 V
64 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM8166BCYG0
667 MHz, 720 MHz
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320F28035PNTR
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320C5533AZHH05
50 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.05 V
128 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART
128 kB
Texas Instruments
TMS320F28375SPZPT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200MHz of signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex math operations common in encoded applications. The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC) and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection. Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals. Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend the connectivity of the F2837xS. The uPP interface is a new feature of the C2000™ MCUs and supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
100-HTQFP (14x14)
Surface Mount
100-TQFP Exposed Pad
1 MB
CANbus, I2C, McBSP, SCI, SPI, UART/USART, uPP, USB
32-Bit Single-Core
FLASH
Internal
41
200 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
D/A 3x12b
A/D 14x12b
C28x
82K x 16
Texas Instruments
TMS320F280200DAT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
105 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
16 KB
32-Bit Single-Core
FLASH
2 K
Internal
20
40 MHz
1.71 V
1.995 V
C28x
12 bits
7
I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6748EZCED4
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6455BCTZ7
720 MHz
90 °C
0 °C
1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320C6455BZTZA
105 °C
-40 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320C5534AZAY10
These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries. These devices are members of TI's C5000 fixed-point Digital Signal Processor (DSP) product family and are designed for low-power applications. The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The PU decodes the instructions, directs tasks to the AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535, provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two secure digital (SD) peripherals, four Inter-IC Sound (I2S Bus) modules, one serial port interface (SPI) with up to four chip selects, one I2C multimaster and slave interface, and a universal asynchronous receiver/transmitter (UART) interface. Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable as a watchdog timer, and an analog phase-locked loop (APLL) clock generator. In addition, the TMS320C5535 includes a tightly coupled FFT Hardware Accelerator. The tightly coupled FFT Hardware Accelerator supports 8- to 1024-point (in power of 2) real and complex-valued FFTs. Furthermore, the device includes the following three integrated LDOs to power different sections of the device. ANA_LDO (all devices) provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power-management circuits (VDDA_ANA). DSP_LDO (TMS320C5535 and 'C5534) provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable on-the-fly by software as long as operating frequency ranges are observed. For lowest power operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core (CVDD) while an external supply provides power to the RTC (CVDDRTCand DVDDRTC). The RTC alarm interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP core. When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation after reset. USB_LDO (TMS320C5535, 'C5534, and 'C5533) provides 1.3 V to the USB core digital (USB_VDD1P3) and PHY circuits (USB_VDDA1P3). These devices are supported by the industry’s award-winning eXpressDSP, Code Composer Studio Integrated Development Environment (IDE), DSP/BIOS, Texas Instruments’ algorithm standard, and the industry’s largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560 emulation device drivers, and evaluation modules. The devices are also supported by the C55x DSP library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support libraries.
100 MHz
70 °C
-10 °C
1.8 V, 2.5 V, 2.75 V, 3.3 V
1.3 V
2 Mbit
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
I2C, I2S, MMC/SD, SPI, UART, USB
128 kB
Texas Instruments
TMS320C6415TBGLZA8
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
850 MHz
105 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FCBGA (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F280230PTT
The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. The F2802x0 Piccolo family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, as well as providing a high level of analog integration. An internal voltage regulator allows for single-rail operation. Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency.
105 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
Internal
22
40 MHz
1.71 V
1.995 V
C28x
I2C, SCI, SPI, UART/USART
4K x 16
A/D 8x12b
Texas Instruments
TMS320F28235PTPQ
C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ real-time microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
34 K
Internal
88
150 MHz
DMA, POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
Texas Instruments
TMS320DM6467CCUTD7
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci™ technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices. The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core incorporates: The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set. Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively. With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see theTMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature numberSPRU732). The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support. The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses. The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors. The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code
364.5 MHz, 729 MHz
85 °C
-40 °C
1.8 V, 3.3 V
1.2 V
248 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
529-FCBGA (19x19)
Surface Mount
529-BFBGA, FCBGA
EBI/EMI, Ethernet, HPI, I2C, McASP, PCI, SPI, UART, USB
Texas Instruments
TMS320VC5402AGWS16
The TMS320VC5402A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5402A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5402A also includes the control mechanisms to manage interrupts, The TMS320VC5402A fixed-point, digital signal processor (DSP) (hereafter referred to as the 5402A unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set. Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5402A also includes the control mechanisms to manage interrupts,
160 MHz
100 °C
-40 °C
3.3 V
1.6 V
32 kB
ROM
Fixed Point
144-NFBGA (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C6416TBCLZD1
The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name. The TMS320C64x™ DSPs (including the TMS320C6414T, TMS320C6415T, and TMS320C6416T devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for wireless infrastructure applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x™ DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x. DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6416T device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 833 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to sixty 384-Kbps or ten 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller. The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port [C6415T/C6416T only]; three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415T/C6416T only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals. The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows. debugger interface for visibility into source code execution. TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.Windows is a registered trademark of the Microsoft Corporation.Other trademarks are the property of their respective owners.Throughout the remainder of this document, the TMS320C6414T, TMS320C6415T, and TMS320C6416T shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414T, C6415T, or C6416T.These C64x™ devices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.
90 °C
-40 °C
3.3 V
1.2 V
1.03 MB
External
Fixed Point
532-FC/CSP (23x23)
Surface Mount
532-BFBGA, FCBGA
Host Interface, McBSP, PCI, UTOPIA
Texas Instruments
TMS320F28031PAGT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
64-TQFP (10x10)
Surface Mount
64-TQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
33
60 MHz
1.71 V
1.995 V
C28x
12 b, 14
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320BC51PQ80
80 MHz
70 °C
0 °C
5 V
5 V
4 kB
Fixed Point
132-BQFP
Surface Mount
132-BQFP Bumpered
BSP, SSP, TDM
16 kB
24.13
24.13
Texas Instruments
TMS320C6472EZTZ6
625 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.1 V
1.44 MB
Fixed Point
Surface Mount
737-BFBGA, FCBGA
Ethernet MAC, Host Interface, I2C, Telecom, UTPOIA
768 kB
Texas Instruments
TMS320C6670AXCYPA
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
6.25 MB
Fixed/Floating Point
841-FCBGA (24x24)
Surface Mount
841-BFBGA, FCBGA
EBI/EMI, Ethernet MAC, I2C, PCIe, SPI, SRIO, UART
128 kB
Texas Instruments
TMS320F28026PTS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
48-LQFP (7x7)
Surface Mount
48-LQFP
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
22
60 MHz
1.71 V
1.995 V
C28x
13
I2C, SCI, SPI, UART/USART
12 b
Texas Instruments
TMS320F2809ZGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 256KB (128K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6748EZWTD4
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based "root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the . The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
448 kB
External
Fixed/Floating Point
361-NFBGA (16x16)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C31PQL40
40 MHz
85 °C
0 °C
5 V
5 V
8.25 kB
External
Floating Point
132-BQFP
Surface Mount
132-BQFP Bumpered
Serial Port
24.13
24.13
Texas Instruments
TMS320C6205ZHK200
The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320C6410ZTSA400
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413 and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI)™ The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413 device offers cost-effective solutions to high-performance DSP programming challenges. With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410 device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device also provides excellent value for packet telephony and for other cost-sensitive applications demanding high performance. The C6410 device also provides excellent value for packet telephony and to other cost-sensitive applications demanding high performance The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space [forC6413device] and the Level 2 memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [forC6410device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The McASP port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. TheC6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
400 MHz
105 °C
-40 °C
3.3 V
1.2 V
160 kB
External
Fixed Point
288-FCBGA (23x23)
Surface Mount
288-BBGA, FCBGA
Texas Instruments
TMS320LC548PGE-80
The TMS320LC548 fixed-point, digital signal processor (DSP) (hereafter referred to as the '548) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. The processor also provides an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The '548 also utilizes a highly specialized instruction set, which is the basis of its operational flexibility and speed. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the '548 includes the control mechanisms to manage interrupts, repeated operations, and function calls. This data sheet contains the pin layouts, signal descriptions, and electrical specifications for the TMS320VC548 DSP. For additional information, see theTMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital Signal Processorsdata sheet (literature number SPRS039). The SPRS039 is considered a family functional overview and should be used in conjunction with this data sheet. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the 144-pin thin quad flatpack (TQFP). The letter B in front of CLKRn, FSRn, DRn, CLKXn, FSXn, and DXn pin names denotes buffered serial port (BSP), where n = 0 or 1 port. The letter T in front of CLKR, FSR, DR, CLKX, FSX, and DX pin names denotes time-division multiplexed (TDM) serial port. The pin assignments table to follow lists each signal quadrant and BGA ball pin number for the 144-pin BGA package. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the TMS320LC548GGU. The TMS320LC548 fixed-point, digital signal processor (DSP) (hereafter referred to as the '548) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. The processor also provides an arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The '548 also utilizes a highly specialized instruction set, which is the basis of its operational flexibility and speed. Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the '548 includes the control mechanisms to manage interrupts, repeated operations, and function calls. This data sheet contains the pin layouts, signal descriptions, and electrical specifications for the TMS320VC548 DSP. For additional information, see theTMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital Signal Processorsdata sheet (literature number SPRS039). The SPRS039 is considered a family functional overview and should be used in conjunction with this data sheet. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the 144-pin thin quad flatpack (TQFP). The letter B in front of CLKRn, FSRn, DRn, CLKXn, FSXn, and DXn pin names denotes buffered serial port (BSP), where n = 0 or 1 port. The letter T in front of CLKR, FSR, DR, CLKX, FSX, and DX pin names denotes time-division multiplexed (TDM) serial port. The pin assignments table to follow lists each signal quadrant and BGA ball pin number for the 144-pin BGA package. The '548 signal descriptions table lists each terminal name, function, and operating mode(s) for the TMS320LC548GGU.
80 MHz
100 °C
-40 °C
3.3 V
3.3 V
64 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
BSP, HPI, TDM
Texas Instruments
TMS320C6205DZHK200
The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. The TMS320C62x™ DSPs (including the TMS320C6205 device) compose the fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6205 (C6205) device is based on the high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making the C6205 an excellent choice for multichannel and multifunction applications. With performance of up to 1600 million instructions per second (MIPS) at a clock rate of 200 MHz, the C6205 offers cost-effective solutions to high-performance DSP-programming challenges. The C6205 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6205 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6205 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6205 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a peripheral component interconnect (PCI) module that supports 33-MHz master/slave interface and 4-wire serial EEPROM interface, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals. The C6205 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
200 MHz
90 °C
0 °C
3.3 V
1.5 V
128 kB
External
Fixed Point
288-NFBGA (16x16)
Surface Mount
288-LFBGA
Texas Instruments
TMS320F28033PNQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
125 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, LINbus, SCI, SPI, UART/USART
10K x 16
Texas Instruments
TMS320F28015NMFA
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device. The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802, TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices, members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1, and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801, F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary of features for each device.
85 °C
-40 °C
100-NFBGA (10x10)
Surface Mount
100-LFBGA
32 KB
32-Bit Single-Core
FLASH
6 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320DM641AZDK6
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (23x23)
Surface Mount
548-BFBGA, FCBGA
Texas Instruments
TMS320VC5505ZCH
The TMS320VC5505 is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The TMS320VC5505 fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The TMS320VC5505 also includes four DMA controllers, each with 4 channels, providing data movements for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The VC5505 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM. Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). The DMA controller provides data movement for sixteen independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. This device also includesthree general-purpose timers with one configurable as a watchdog timer, and a analog phase-locked loop (APLL) clock generator. In addition, the VC5505 includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The VC5505 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The VC5505 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support The TMS320VC5505 is a member of TI's TMS320C5000™ fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications. The TMS320VC5505 fixed-point DSP is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The TMS320VC5505 also includes four DMA controllers, each with 4 channels, providing data movements for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus™) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface. The VC5505 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM. Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). The DMA controller provides data movement for sixteen independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. This device also includesthree general-purpose timers with one configurable as a watchdog timer, and a analog phase-locked loop (APLL) clock generator. In addition, the VC5505 includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs. The VC5505 is supported by the industry's award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments' algorithm standard, and the industry's largest third-party network. Code Composer Studio IDE features code generation tools including a C Compiler and Linker, RTDX™, XDS100™, XDS510™, XDS560™ emulation device drivers, and evaluation modules. The VC5505 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip support
100 MHz
1.8 V, 2.5 V, 2.8 V, 3.3 V
1.3 V
320 kB
Fixed Point
196-NFBGA (10x10)
Surface Mount
196-LFBGA
I2C, I2S, SPI, UART, USB
128 kB
Texas Instruments
TMS320C6657CZHA
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
100 °C
-40 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320VC5502ZZZ200
The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5502 (5502) fixed-point digital signal processor (DSP) is based on the TMS320C55x™ DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform data transfers independent of the CPU activity. The C55x™ CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5502 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst RAM. Additional peripherals include UART, watchdog timer, and an I-Cache. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The host-port interface (HPI) is a 8-/16-bit parallel interface used to provide host processor access to 32K words of internal memory on the 5502. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention. Two general-purpose timers, eight dedicated general-purpose I/O (GPIO) pins, and analog phase-locked loop (APLL) clock generation are also included. The 5502 is supported by the industry's award-winning eXpress DSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments. algorithm standard, and the industry's largest third-party network. The Code Composer Studio™ IDE features code generation tools that include a C Compiler, Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and evaluation modules. The 5502 is also supported by the C55x™ DSP Library, which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3.3 V
1.26 V
80 kB
ROM
Fixed Point
201-BGA MICROSTAR (15x15)
Surface Mount
201-LFBGA
Host Interface, I2C, McBSP, UART
32 kB
Texas Instruments
TMS320C6747CZKB4
456 MHz
90 °C
0 °C
3.3 V
1.2 V
448 kB
External
Fixed/Floating Point
256-BGA (17x17)
Surface Mount
256-BGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, SPI, UART, USB
Texas Instruments
TMS320C6455BGTZ
90 °C
0 °C
1.2 V, 1.25 V, 1.5 V, 1.8 V, 3.3 V
1.2 V
2.1 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
32 kB
Texas Instruments
TMS320VC5510AGBC1
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
160 MHz
85 °C
0 °C
3.3 V
1.6 V
320 kB
ROM
Fixed Point
240-NFBGA (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320C54V90AGGU
117 MHz
100 °C
0 °C
3.3 V
1.5 V
80 kB
Fixed Point
144-BGA MICROSTAR (12x12)
Surface Mount
144-LFBGA
Host Interface, McBSP
256 kB
Texas Instruments
TMS320F28075PTPS
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation; andsensing and signal processing. To accelerate application development, theDigitalPower software development kit (SDK) for C2000 MCUsand theMotorControl software development kit (SDK) for C2000™ MCUsare available. The F2807x is a 32-bit floating-point microcontroller based on TI’s industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations. The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics. The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x. The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units. Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check outThe Essential Guide for Developing With C2000™ Real-Time Microcontrollersand visit theC2000™ real-time control MCUspage. TheGetting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guidecovers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out theTMDSCNCD28379DorLAUNCHXL-F28379Devaluation board sand downloadC2000Ware. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 ¯C
-40 °C
176-HLQFP (24x24)
Surface Mount
176-LQFP Exposed Pad
512 KB
32-Bit Single-Core
FLASH
External
97
120 MHz
1.14 V
3.47 V
DMA, POR, PWM, WDT
C28x
CANbus, EBI/EMI, I2C, McBSP, SCI, SPI, UART/USART, USB
A/D 17x12b, D/A 3x12b
Texas Instruments
TMS320VC5510AZGWA2
The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037). The TMS320VC5510/5510A (5510/5510A) fixed-point digital signal processors (DSPs) are based on the TMS320C55x DSP generation CPU processor core. The C55x™;DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the address unit (AU) and data unit (DU) of the C55x CPU. The C55x™; DSP generation supports a variable byte width instruction set for improved code density. The instruction unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the program unit (PU). The program unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 5510/5510A also includes a 24K-byte instruction cache to minimize external memory accesses, improving data throughput and conserving system power. The 5510/5510A peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM and synchronous burst SRAM. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (EHPI) is a 16-bit parallel interface used to provide host processor access to internal memory on the 5510/5510A. The EHPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wider variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, eight general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5510/5510A is supported by the industry’s leading eXpressDSP™; software environment including the Code Composer Studio™; integrated development environment, DSP/BIOS™; software kernel foundation, the TMS320™; DSP Algorithm Standard, and the industry’s largest third-party network. Code Composer Studio features code generation tools including a C-Compiler, Visual Linker, simulator, Real-Time Data Exchange (RTDX™;), XDS510™; emulation device drivers, and Chip Support Libraries (CSL). DSP/BIOS is a scalable real-time software foundation available for no cost to users of Texas Instruments’ DSP products providing a pre-emptive task scheduler and real-time analysis capabilities with very low memory and megahertz overhead. The TMS320 DSP Algorithm Standard is a specification of coding conventions allowing fast integration of algorithms from different teams, sites, or third parties into the application framework. Texas Instruments’ extensive DSP third-party network of over 400 providers brings focused competencies and complete solutions to customers. Texas Instruments (TI) has also developed foundation software available for the 5510/5510A. The C55x DSP Library (DSPLIB) features over 50 C-callable software kernels (FIR/IIR filters, Fast Fourier Transforms (FFTs), and various computational functions). The DSP Image/Video Processing Library (IMGLIB) contains over 20 software kernels highly optimized for C55x DSPs and is compiled with the latest revision of the C55x DSP code generation tools. These imaging functions support a wide range of applications that include compression, video processing, machine vision, and medical imaging. The TMS320C55x DSP core was created with an open architecture that allows the addition of application-specific hardware to boost performance on specific algorithms. The hardware extensions on the 5510/5510A strike the perfect balance of fixed function performance with programmable flexibility, while achieving low-power consumption, and cost that traditionally has been difficult to find in the video-processor market. The extensions allow the 5510/5510A to deliver exceptional video codec performance with more than half its bandwidth available for performing additional functions such as color space conversion, user-interface operations, security, TCP/IP, voice recognition, and text-to-speech conversion. As a result, a single 5510/5510A DSP can power most portable digital video applications with processing headroom to spare. For more information, see theTMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Reference(literature number SPRU098). For more information on using the the DSP Image Processing Library, see theTMS320C55x Image/Video Processing Library Programmer’s Reference(literature number SPRU037).
200 MHz
85 °C
-40 °C
3.3 V
1.6 V
344 kB
ROM
Fixed Point
240-BGA MICROSTAR (15x15)
Surface Mount
240-LFBGA
Host Interface, McBSP
32 kB
Texas Instruments
TMS320DM8147BCYE0
90 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1.1 V, 1.2 V, 1.35 V
1.08 MB
ROM
Digital Media System-on-Chip (DMSoC)
684-FCBGA
Surface Mount
684-BFBGA, FCBGA
CAN, Ethernet, I2C, McASP, McBSP, MMC/SD/SDIO, SATA, SPI, UART, USB
48 kB
23
23
600 MHz
720 MHz
Texas Instruments
TMS320VC5507PGE
The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries. The TMS320VC5507 fixed-point digital signal processor (DSP) is based on the TMS320C55x DSP generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power through increased parallelism and total focus on reduction in power dissipation. The CPU supports an internal bus structure that is composed of one program bus, three data read buses, two data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up to two data transfers per cycle independent of the CPU activity. The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit × 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU. The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions. The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to operate in standby mode for more than 60% to 70% of time. For the applications which require more than 128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers the TMS320VC5509A device, which is based on the TMS320C55x DSP core. The general-purpose input and output functions and the 10-bit A/D provide sufficient pins for status, interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the asynchronous EMIF. Serial media is supported through three McBSPs. The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock, watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and multichannel communication with up to 128 separately enabled channels. The enhanced host-port interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide glueless interface to a wide variety of host processors. The DMA controller provides data movement for six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and digital phase-locked loop (DPLL) clock generation are also included. The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™ Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the industry‘s largest third-party network. The Code Composer Studio IDE features code generation tools including a C Compiler and Visual Linker, simulator, RTDX™, XDS51™. emulation device drivers, and evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and board support libraries.
200 MHz
85 °C
-40 °C
3 V, 3.3 V
1.6 V
128 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Host Interface, I2C, McBSP
64 kB
Texas Instruments
TMS320DM355ZCE270
270 MHz
85 °C
0 °C
1.8 V, 3.3 V
1.3 V
56 kB
ROM
8 kB
Digital Media System-on-Chip (DMSoC)
337-BGA (13x13)
Surface Mount
337-LFBGA
ASP, I2C, SPI, UART, USB
Texas Instruments
TMS320F2809GGMA
C28x C2000™ C28x Fixed-Point Microcontroller IC 32-Bit Single-Core 100MHz 256KB (128K x 16) FLASH 100-BGA MICROSTAR (10x10)
85 °C
-40 °C
100-BGA MICROSTAR (10x10)
Surface Mount
100-LFBGA
256 KB
32-Bit Single-Core
FLASH
18 K
Internal
35
100 MHz
1.71 V
1.89 V
POR, PWM, WDT
C28x
12 b, 16
Automotive
AEC-Q100
CANbus, I2C, SCI, SPI, UART/USART
Texas Instruments
TMS320C6655SCZH
The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. The C665x are high performance fixed- and floating-point DSPs that are based on TI’s KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.25 GHz. For developers of a broad range of applications, both C665x DSPs enable a platform that is power-efficient and easy to use. In addition, the C665x DSPs are fully backward compatible with all existing C6000™ family of fixed- and floating-point DSPs. TI’s KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intradevice and interdevice communication that lets the various DSP resources operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a nonblocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating-point capability and the per-core raw computational performance is an industry-leading 40 GMACS per core and 20 GFLOPS per core (@1.25 GHz operating frequency). The C66x core can execute 8 single precision floating-point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE 754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating-point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backward code-compatible with TI’s previous generation C6000 fixed- and floating-point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C665x DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, 1024KB of dedicated memory can be configured as mapped RAM or cache. The device also integrates 1024KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at a rate of 1333 MHz and has ECC DRAM support. This family supports a number of high-speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet. This family of DSPs also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port (uPP), and a 16-bit asynchronous EMIF, along with general-purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, a 40-Gbaud full-duplex interface called HyperLink is included. The C665x devices have a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. The KeyStone architecture is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This internal bandwidth is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller lets processing cores access shared memory directly without drawing from the capacity of TeraNet, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that lets SoCs work in tandem. The low-protocol overhead and high throughput of HyperLink make an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.
85 °C
0 °C
1 V, 1.5 V, 1.8 V
1 V
2.06 MB
Fixed/Floating Point
625-FCBGA (21x21)
Surface Mount
625-BFBGA, FCBGA
DDR3, EBI/EMI, Ethernet, I2C, McBSP, PCIe, SPI, UART, UPP
128 kB
Texas Instruments
TMS320C50PGEA57
57 MHz
85 °C
-40 °C
5 V
5 V
20 kB
Fixed Point
144-LQFP (20x20)
Surface Mount
144-LQFP
Serial Port
Texas Instruments
TMS320C6454BCTZ
90 °C
0 °C
1.8 V, 3.3 V
1.25 V
1.08 MB
ROM
Fixed Point
697-FCBGA (24x24)
Surface Mount
697-BFBGA, FCBGA
10/100/1000 Ethernet MAC, Host Interface, I2C, McBSP, PCI
32 kB
Texas Instruments
TMS320C6746EZCED4
The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. The TMS320C6746 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The DSP L2 is accessible by other hosts in the system. The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each withRTSandCTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution.
456 MHz
90 °C
-40 °C
1.8 V, 3.3 V
1 V, 1.1 V, 1.2 V, 1.3 V
488 kB
Fixed/Floating Point
361-NFBGA (13x13)
Surface Mount
361-LFBGA
EBI/EMI, Ethernet MAC, Host Interface, I2C, McASP, McBSP, SPI, UART, USB
1.088 MB
Texas Instruments
TMS320DM642AGNZ6
The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The TMS320C64x™ DSPs (including the TMS320DM642 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320DM642 (DM642) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs)- with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e. g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels - A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all 8 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VXCO interpolated control port (VIC) provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see theTMS320C64x Video Port/VXCO Interpolated Control (VIC) Port Reference Guide(literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see theTMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide(literature number SPRU628). The I2C0 port on the TMS320DM642 allows the DSP to easily control peripheral devices, boot from a serial EEPROM, and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
600 MHz
90 °C
0 °C
3.3 V
1.4 V
160 kB
External
Fixed Point
548-FCBGA (27x27)
Surface Mount
548-BBGA, FCBGA
Host Interface, I2C, McASP, McBSP, PCI
Texas Instruments
TMS320DM8168CCYG4
The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology. The DM816x DaVinci video processors are a highly integrated, programmable platform that leverages TI's DaVinci technology to meet the processing needs of the following applications: video encode, decode, transcode, and transrate; video security; video conferencing; video infrastructure; media server; and digital signage. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The device combines programmable video and audio processing with a highly integrated peripheral set. Key to the device are up to three high-definition video and imaging coprocessors (HDVICP2). Each coprocessor can perform a single 1080p60 H.264 encode or decode or multiple lower resolution or frame rate encodes and decodes. Multichannel HD-to-HD or HD-to-SD transcoding and multicoding are also possible. With the ability to simultaneously process 1080p60 streams, the TMS320DM816x device is a powerful solution for today's demanding HD video application requirements. Programmability is provided by an ARM Cortex-A8 RISC CPU with NEON extension, TI C674x VLIW floating-point DSP core, and high-definition video and imaging coprocessors. The ARM processor lets developers keep control functions separate from audio and video algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. The ARM Cortex-A8 32-bit RISC processor with NEON floating-point extension includes: 32KB of instruction cache; 32KB of data cache; 256KB of L2 cache; 48KB of public ROM, and 64KB of RAM. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The peripheral set includes: HD video processing subsystem (HDVPSS), which provides output of simultaneous HD and SD analog video and dual HD video inputs; up to two Gigabit Ethernet MACs (10 Mbps,100, Mbps, 1000 Mbps) with GMII and MDIO interface; two USB ports with integrated 2.0 PHY; PCIe port x2 lanes GEN2 compliant interface, which allows the device to act as a PCIe root complex or device endpoint; one 6-channel McASP audio serial port (with DIT mode); two dual-channel McASP audio serial ports (with DIT mode); one McBSP multichannel buffered serial port; three UARTs with IrDA and CIR support; SPI serial interface; SD and SDIO serial interface; two I2C master and slave interfaces; up to 64 GPIO pins; seven 32-bit timers; system watchdog timer; dual DDR2 and DDR3 SDRAM interface; flexible 8-bit and 16-bit asynchronous memory interface; and up to two SATA interfaces for external storage on two disk drives or more with the use of a port multiplier. The device also includes an SGX530 3D graphics engine (available only on the TMS320DM8168 device) to enable sophisticated GUIs and compelling user interfaces and interactions. Additionally, the device has a complete set of development tools for both the ARM and DSP, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Microsoft Windows debugger interface for visibility into source code execution. The C674x DSP core is the high-performance floating-point DSP generation in the TMS320C6000 DSP platform. The C674x floating-point DSP processor uses 32KB of L1 program memory and 32KB of L1 data memory. Up to 32KB of L1P can be configured as program cache. The remaining is noncacheable no-wait-state program memory. Up to 32KB of L1D can be configured as data cache. The remaining is noncacheable no-wait-state data memory. The DSP has 256KB of L2 RAM, which can be defined as SRAM, L2 cache, or a combination of both. All C674x L3 and off-chip memory accesses are routed through a system MMU. The device package has been specially engineered with Via Channel technology. This technology allows use of 0.8-mm pitch PCB feature sizes in this 0.65-mm pitch package, and substantially reduces PCB costs. Via Channel technology also allows PCB routing in only two signal layers due to the increased layer efficiency of the Via Channel BGA technology.
95 °C
0 °C
1.5 V, 1.8 V, 3.3 V
1 V
1.5 MB
ROM
Digital Media System-on-Chip (DMSoC)
1031-FCBGA (25x25)
Surface Mount
1031-BFBGA, FCBGA
EBI/EMI, Ethernet, I2C, McASP, McBSP, PCI, SD/SDIO, Serial ATA, SPI, UART, USB
48 kB
Texas Instruments
TMS320F28031PNT
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit theC2000™ real-time control MCUspage.
105 °C
-40 °C
Surface Mount
80-LQFP
64 KB
32-Bit Single-Core
FLASH
8 K
Internal
45
60 MHz
1.71 V
1.995 V
C28x
12 b, 16
CANbus, I2C, LINbus, SCI, SPI, UART/USART
Texas Instruments
TMS320F28023DAQ
C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000. C2000™ 32-bit microcontrollersare optimized for processing, sensing, and actuation to improve closed-loop performance inreal-time control applicationssuch asindustrial motor drives;solar inverters and digital power;electrical vehicles and transportation;motor control; andsensing and signal processing. The C2000 line includes thePremium performance MCUsand theEntry performance MCUs. The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also provides a high level of analog integration. An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLOreferences. The ADC interface has been optimized for low overhead and latency. To learn more about the C2000 MCUs, visit the C2000 Overview atwww.ti.com/c2000.
125 °C
-40 °C
38-TSSOP
Surface Mount
38-TSSOP (0.240", 6.10mm Width)
64 KB
32-Bit Single-Core
FLASH
6 K
Internal
20
50 MHz
1.71 V
1.995 V
C28x
12 bits
7
Automotive
AEC-Q100
I2C, SCI, SPI, UART/USART

Description

General part information

TMS320 Series

IC DSP 388-BGA

Documents

Technical documentation and resources