
STGW30H60DLFB
ObsoleteIGBT HB 600V 30A HS TO247
Deep-Dive with AI
Search across all available documentation for this part.

STGW30H60DLFB
ObsoleteIGBT HB 600V 30A HS TO247
Deep-Dive with AI
Technical Specifications
Parameters and characteristics for this part
| Specification | STGW30H60DLFB |
|---|---|
| Current - Collector (Ic) (Max) [Max] | 60 A |
| Current - Collector Pulsed (Icm) | 120 A |
| Gate Charge | 149 nC |
| IGBT Type | Trench Field Stop |
| Mounting Type | Through Hole |
| Operating Temperature [Max] | 175 ░C |
| Operating Temperature [Min] | -55 °C |
| Package / Case | TO-247-3 |
| Power - Max [Max] | 260 W |
| Supplier Device Package | TO-247-3 |
| Switching Energy | 293 µJ |
| Td (on/off) @ 25°C | -/146ns |
| Test Condition | 15 V, 400 V, 30 A, 10 Ohm |
| Vce(on) (Max) @ Vge, Ic | 2 V |
| Voltage - Collector Emitter Breakdown (Max) [Max] | 600 V |
STGW30M65DF2 Series
Trench gate field-stop IGBT, V series 600 V, 30 A very high speed
| Part | Gate Charge | Power - Max [Max] | IGBT Type | Supplier Device Package | Operating Temperature [Min] | Operating Temperature [Max] | Current - Collector Pulsed (Icm) | Switching Energy | Mounting Type | Td (on/off) @ 25°C | Current - Collector (Ic) (Max) [Max] | Package / Case | Voltage - Collector Emitter Breakdown (Max) [Max] | Vce(on) (Max) @ Vge, Ic | Test Condition | Reverse Recovery Time (trr) | Td (on/off) @ 25°C | Td (on/off) @ 25°C | Td (on/off) @ 25°C | Switching Energy [custom] | Switching Energy [custom] | Voltage - Collector Emitter Breakdown (Max) | Vce(on) (Max) @ Vge, Ic [Max] |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STMicroelectronics | 163 nC | 260 W | Trench Field Stop | TO-247 | -55 °C | 175 ░C | 120 A | 233 µJ 383 µJ | Through Hole | 45 ns 189 ns | 60 A | TO-247-3 | 600 V | 2.3 V | 10 Ohm 15 V 30 A 400 V | ||||||||
STMicroelectronics | 163 nC | 258 W | Trench Field Stop | TO-247-3 | -55 °C | 175 ░C | 120 A | 233 µJ 383 µJ | Through Hole | 45 ns 189 ns | 60 A | TO-247-3 | 600 V | 2.3 V | 10 Ohm 15 V 30 A 400 V | 53 ns | |||||||
STMicroelectronics | 102 nC | 200 W | TO-247-3 | -55 °C | 150 °C | 150 A | 181 µJ 305 µJ | Through Hole | 60 A | TO-247-3 | 600 V | 2.5 V | 10 Ohm 15 V 20 A 390 V | 118 ns | 29.5 ns | ||||||||
STMicroelectronics | 149 nC | 260 W | Trench Field Stop | TO-247-3 | -55 °C | 175 ░C | 120 A | 293 µJ | Through Hole | 60 A | TO-247-3 | 600 V | 2 V | 10 Ohm 15 V 30 A 400 V | -/146ns | ||||||||
STMicroelectronics | 105 nC | 220 W | TO-247-3 | -55 °C | 125 ¯C | 100 A | 2.4 mJ 4.3 mJ | Through Hole | 60 A | TO-247-3 | 1200 V | 3.85 V | 10 Ohm 15 V 20 A 960 V | 84 ns | |||||||||
STMicroelectronics | 102 nC | 200 W | TO-247-3 | -55 °C | 150 °C | 150 A | 181 µJ 305 µJ | Through Hole | 60 A | TO-247-3 | 600 V | 2.5 V | 10 Ohm 15 V 20 A 390 V | 40 ns | 118 ns | 29.5 ns | |||||||
STMicroelectronics | 149 nC | 260 W | Trench Field Stop | TO-247 | -55 °C | 175 ░C | 120 A | Through Hole | 60 A | TO-247-3 | 600 V | 2 V | 10 Ohm 15 V 30 A 400 V | 53 ns | 37 ns 146 ns | 383 µJ | 293 µJ | ||||||
STMicroelectronics | 80 nC | 258 W | Trench Field Stop | TO-247-3 | -55 °C | 175 ░C | 120 A | 300 µJ 960 µJ | Through Hole | 60 A | TO-247-3 | 2 V | 10 Ohm 15 V 30 A 400 V | 140 ns | 115 ns | 31.6 ns | 650 V | ||||||
STMicroelectronics | 110 nC | 220 W | TO-247-3 | -55 °C | 150 °C | 135 A | 1.66 mJ 4.44 mJ | Through Hole | 60 A | TO-247-3 | 10 Ohm 15 V 20 A 900 V | 152 ns | 275 ns | 29 ns | 900 V | 2.75 V |
Pricing
Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly
| Distributor | Package | Quantity | $ | |
|---|---|---|---|---|
Description
General part information
STGW30M65DF2 Series
These devices are IGBTs developed using an advanced proprietary trench gate field-stop structure. The devices are part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where the low-loss and the short-circuit functionality are essential. Furthermore, the positive VCE(sat) temperature coefficient and the tight parameter distribution result in safer paralleling operation.
Documents
Technical documentation and resources
No documents available