Zenode.ai Logo
8101602EA - https://ti.com/content/dam/ticom/images/products/package/j/j0016a.png

8101602EA

Active
Texas Instruments

CMOS PRESETTABLE UP/DOWN COUNTER

Deep-Dive with AI

Search across all available documentation for this part.

8101602EA - https://ti.com/content/dam/ticom/images/products/package/j/j0016a.png

8101602EA

Active
Texas Instruments

CMOS PRESETTABLE UP/DOWN COUNTER

Technical Specifications

Parameters and characteristics for this part

Specification8101602EA
Count Rate11 MHz
DirectionDown, Up
Logic TypeDecade, Binary Counter
Mounting TypeThrough Hole
Number of Bits per Element4
Number of Elements [custom]1
Operating Temperature [Max]125 °C
Operating Temperature [Min]-55 C
Package / Case16-CDIP (0.300", 7.62mm)
ResetAsynchronous
Supplier Device Package16-CDIP
TimingSynchronous
Trigger TypePositive Edge
Voltage - Supply [Max]18 V
Voltage - Supply [Min]3 V

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

8101602 Series

CMOS Presettable Up/Down Counter

PartSupplier Device PackageTrigger TypeDirectionMounting TypeLogic TypeNumber of Bits per ElementNumber of Elements [custom]Operating Temperature [Min]Operating Temperature [Max]Voltage - Supply [Max]Voltage - Supply [Min]ResetCount RatePackage / CaseTiming
Texas Instruments
8101602EA
CD4029B consists of a four-stage binary or BCD-decade up/down counter with provisions for look-ahead carry in both counting modes. The inputs consist of a single CLOCK, CARRY-IN\ (CLOCK ENABLE\), BINARY/DECADE, UP/DOWN, PRESET ENABLE, and four individual JAN signals, Q1, Q2, Q3, Q4 and a CARRY OUT\ signal are provided as outputs. A high PRESET ENABLE signal allows information on the JAM INPUTS to preset the counter to any state asynchronously with the clock. A low on each JAM line, when the PRESET-ENABLE signal is high, resets the counter to its zero count. The counter is advanced one count at the positive transition of the clock when the CARRY-IN\ and PRESET ENALBE signals are low. Advancement is inhibited when the CARRY-IN\ or PRESET ENABLE signals are high. The CARRY-OUT\ signal is normally high and goes low when the counter reaches its maximum count in the UP mode or the minimum count in the DOWN mode provided the CARRY-IN\ signal is low. The CARRY-IN\ signal in the low state can thus be considered a CLOCK ENABLE\. The CARRY-IN\ terminal must be connected to VSSwhen not in use. Binary counting is accomplished when the BINARY/DECADE input is high; the counter counts in the decade mode when the BINARY/DECADE input is low. The counter counts up when the UP/DOWN input is high, and down when the UP/DOWN input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in Fig. 17. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times. The CD4029B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). CD4029B consists of a four-stage binary or BCD-decade up/down counter with provisions for look-ahead carry in both counting modes. The inputs consist of a single CLOCK, CARRY-IN\ (CLOCK ENABLE\), BINARY/DECADE, UP/DOWN, PRESET ENABLE, and four individual JAN signals, Q1, Q2, Q3, Q4 and a CARRY OUT\ signal are provided as outputs. A high PRESET ENABLE signal allows information on the JAM INPUTS to preset the counter to any state asynchronously with the clock. A low on each JAM line, when the PRESET-ENABLE signal is high, resets the counter to its zero count. The counter is advanced one count at the positive transition of the clock when the CARRY-IN\ and PRESET ENALBE signals are low. Advancement is inhibited when the CARRY-IN\ or PRESET ENABLE signals are high. The CARRY-OUT\ signal is normally high and goes low when the counter reaches its maximum count in the UP mode or the minimum count in the DOWN mode provided the CARRY-IN\ signal is low. The CARRY-IN\ signal in the low state can thus be considered a CLOCK ENABLE\. The CARRY-IN\ terminal must be connected to VSSwhen not in use. Binary counting is accomplished when the BINARY/DECADE input is high; the counter counts in the decade mode when the BINARY/DECADE input is low. The counter counts up when the UP/DOWN input is high, and down when the UP/DOWN input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in Fig. 17. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times. The CD4029B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).
16-CDIP
Positive Edge
Down, Up
Through Hole
Binary Counter, Decade
4
1
-55 C
125 °C
18 V
3 V
Asynchronous
11 MHz
16-CDIP (0.300", 7.62mm)
Synchronous

Description

General part information

8101602 Series

CD4029B consists of a four-stage binary or BCD-decade up/down counter with provisions for look-ahead carry in both counting modes. The inputs consist of a single CLOCK, CARRY-IN\ (CLOCK ENABLE\), BINARY/DECADE, UP/DOWN, PRESET ENABLE, and four individual JAN signals, Q1, Q2, Q3, Q4 and a CARRY OUT\ signal are provided as outputs.

A high PRESET ENABLE signal allows information on the JAM INPUTS to preset the counter to any state asynchronously with the clock. A low on each JAM line, when the PRESET-ENABLE signal is high, resets the counter to its zero count. The counter is advanced one count at the positive transition of the clock when the CARRY-IN\ and PRESET ENALBE signals are low. Advancement is inhibited when the CARRY-IN\ or PRESET ENABLE signals are high. The CARRY-OUT\ signal is normally high and goes low when the counter reaches its maximum count in the UP mode or the minimum count in the DOWN mode provided the CARRY-IN\ signal is low. The CARRY-IN\ signal in the low state can thus be considered a CLOCK ENABLE\. The CARRY-IN\ terminal must be connected to VSSwhen not in use.

Binary counting is accomplished when the BINARY/DECADE input is high; the counter counts in the decade mode when the BINARY/DECADE input is low. The counter counts up when the UP/DOWN input is high, and down when the UP/DOWN input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in Fig. 17.