Zenode.ai Logo
CD74HC193MT - https://ti.com/content/dam/ticom/images/products/package/d/d0016a.png

CD74HC193MT

Active
Texas Instruments

HIGH SPEED CMOS LOGIC PRESETTABLE SYNCHRONOUS 4-BIT BINARY UP/DOWN COUNTER WITH ASYNCHRONOUS RESET

Deep-Dive with AI

Search across all available documentation for this part.

CD74HC193MT - https://ti.com/content/dam/ticom/images/products/package/d/d0016a.png

CD74HC193MT

Active
Texas Instruments

HIGH SPEED CMOS LOGIC PRESETTABLE SYNCHRONOUS 4-BIT BINARY UP/DOWN COUNTER WITH ASYNCHRONOUS RESET

Technical Specifications

Parameters and characteristics commom to parts in this series

SpecificationCD74HC193MT74HC193 Series
Count Rate29 MHz24 - 29 MHz
DirectionDown, UpDown, Up
Grade-Automotive
Logic TypeBinary CounterBinary Counter
Mounting TypeSurface MountSurface Mount, Through Hole
Number of Bits per Element44
Number of Elements [custom]11
Operating Temperature [Max]125 °C85 - 125 °C
Operating Temperature [Min]-55 °C-55 - -40 °C
Package / Case16-SOIC16-SOIC, 16-TSSOP, 16-DIP
Package / Case3.9 mm Width, 0.154 in0.154 - 7.62 mm Width
Package / Case-0.173 "
Package / Case-4.4 mm
Qualification-AEC-Q100
ResetAsynchronousAsynchronous
Supplier Device Package16-SOIC16-SOIC, 16-TSSOP, 16-PDIP
TimingSynchronousSynchronous
Trigger TypePositive EdgePositive Edge
Voltage - Supply [Max]6 V6 V
Voltage - Supply [Min]2 V2 V

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

74HC193 Series

4-Bit Synchronous Up/Down Counters (Dual Clock With Clear)

PartVoltage - Supply [Max]Voltage - Supply [Min]Number of Elements [custom]Count RateSupplier Device PackagePackage / CasePackage / CaseTrigger TypeMounting TypeLogic TypeTimingNumber of Bits per ElementResetDirectionOperating Temperature [Min]Operating Temperature [Max]Package / Case [x]Package / Case [x]GradeQualification
Texas Instruments
SN74HC193D
The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter. The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter.
6 V
2 V
1
24 MHz
16-SOIC
16-SOIC
0.154 in, 3.9 mm Width
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-40 °C
85 °C
Texas Instruments
SN74HC193DT
Counter IC Binary Counter 1 Element 4 Bit Positive Edge 16-SOIC
6 V
2 V
1
24 MHz
16-SOIC
16-SOIC
0.154 in, 3.9 mm Width
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-40 °C
85 °C
Texas Instruments
SN74HC193QPWRG4Q1
The SN74HC193 device is a 4-bit synchronous, reversible, up/down binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change simultaneously with each other when dictated by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD) input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count andLOADinputs. This counter was designed to be cascaded without the need for external circuitry. The borrow (BO) output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO) output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counter then can be cascaded easily by feedingBOandCOto DOWN and UP, respectively, of the succeeding counter. The SN74HC193 device is a 4-bit synchronous, reversible, up/down binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change simultaneously with each other when dictated by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD) input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count andLOADinputs. This counter was designed to be cascaded without the need for external circuitry. The borrow (BO) output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO) output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counter then can be cascaded easily by feedingBOandCOto DOWN and UP, respectively, of the succeeding counter.
6 V
2 V
1
24 MHz
16-TSSOP
16-TSSOP
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-40 °C
85 °C
0.173 "
4.4 mm
Automotive
AEC-Q100
Texas Instruments
CD74HC193M96E4
Counter IC Binary Counter 1 Element 4 Bit Positive Edge 16-SOIC
6 V
2 V
1
29 MHz
16-SOIC
16-SOIC
0.154 in, 3.9 mm Width
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-55 °C
125 °C
Texas Instruments
CD74HC193MT
The ’HC192, ’HC193 and ’HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively. Presetting the counter to the number on the preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL)\. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the Clock-Down input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and CLock-Down inputs, respectively, of the next most significant counter. If a decade counter is present to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram. The ’HC192, ’HC193 and ’HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively. Presetting the counter to the number on the preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL)\. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the Clock-Down input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and CLock-Down inputs, respectively, of the next most significant counter. If a decade counter is present to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram.
6 V
2 V
1
29 MHz
16-SOIC
16-SOIC
0.154 in, 3.9 mm Width
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-55 °C
125 °C
Texas Instruments
SN74HC193QPWRQ1
Counter IC Binary Counter 1 Element 4 Bit Positive Edge 16-TSSOP
6 V
2 V
1
24 MHz
16-TSSOP
16-TSSOP
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-40 °C
85 °C
0.173 "
4.4 mm
Automotive
AEC-Q100
Texas Instruments
SN74HC193DR
The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter. The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter.
6 V
2 V
1
24 MHz
16-SOIC
16-SOIC
0.154 in, 3.9 mm Width
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-40 °C
85 °C
Texas Instruments
SN74HC193PWR
The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter. The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter.
6 V
2 V
1
24 MHz
16-TSSOP
16-TSSOP
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-40 °C
85 °C
0.173 "
4.4 mm
Texas Instruments
CD74HC193E
The ’HC192, ’HC193 and ’HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively. Presetting the counter to the number on the preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL)\. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the Clock-Down input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and CLock-Down inputs, respectively, of the next most significant counter. If a decade counter is present to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram. The ’HC192, ’HC193 and ’HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively. Presetting the counter to the number on the preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL)\. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the Clock-Down input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and CLock-Down inputs, respectively, of the next most significant counter. If a decade counter is present to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram.
6 V
2 V
1
29 MHz
16-PDIP
16-DIP
0.3 in, 7.62 mm
Positive Edge
Through Hole
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-55 °C
125 °C
Texas Instruments
SN74HC193N
The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter. The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs. A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD\ inputs. These counters were designed to be cascaded without the need for external circuitry. The borrow (BO)\ output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO)\ output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding BO\ and CO\ to DOWN and UP, respectively, of the succeeding counter.
6 V
2 V
1
24 MHz
16-PDIP
16-DIP
0.3 in, 7.62 mm
Positive Edge
Through Hole
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-40 °C
85 °C
Texas Instruments
CD74HC193M
The ’HC192, ’HC193 and ’HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively. Presetting the counter to the number on the preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL)\. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the Clock-Down input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and CLock-Down inputs, respectively, of the next most significant counter. If a decade counter is present to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram. The ’HC192, ’HC193 and ’HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively. Presetting the counter to the number on the preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL)\. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the Clock-Down input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and CLock-Down inputs, respectively, of the next most significant counter. If a decade counter is present to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram.
6 V
2 V
1
29 MHz
16-SOIC
16-SOIC
0.154 in, 3.9 mm Width
Positive Edge
Surface Mount
Binary Counter
Synchronous
4
Asynchronous
Down, Up
-55 °C
125 °C

Description

General part information

74HC193 Series

The ’HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.

The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load (LOAD)\ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs.