
SN75LBC031D
ActiveIC TRANSCEIVER HALF 1/1 8SOIC
Deep-Dive with AI
Search across all available documentation for this part.

SN75LBC031D
ActiveIC TRANSCEIVER HALF 1/1 8SOIC
Deep-Dive with AI
Technical Specifications
Parameters and characteristics commom to parts in this series
Specification | SN75LBC031D | 75LBC031 Series |
---|---|---|
Duplex | Half | Half |
Mounting Type | Surface Mount | Surface Mount |
Operating Temperature [Max] | 85 °C | 85 °C |
Operating Temperature [Min] | -40 °C | -40 °C |
Package / Case | 3.9 mm | 3.9 mm |
Package / Case | 8-SOIC | 8-SOIC |
Protocol | CANbus | CANbus |
Receiver Hysteresis | 180 mV | 180 mV |
Supplier Device Package | 8-SOIC | 8-SOIC |
Type | Transceiver | Transceiver |
Voltage - Supply [Max] | 5.5 V | 5.5 V |
Voltage - Supply [Min] | 4.5 V | 4.5 V |
Pricing
Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly
75LBC031 Series
Transceiver
Part | Protocol | Mounting Type | Supplier Device Package | Type | Package / Case | Package / Case | Duplex | Receiver Hysteresis | Operating Temperature [Min] | Operating Temperature [Max] | Voltage - Supply [Max] | Voltage - Supply [Min] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Texas Instruments SN75LBC031DRThe SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to VCC. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.
The SN75LBC031 is characterized for operation from -40°C to 85°C. The SN65LBC031 is characterized for operation from -40°C to 125°C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40°C to 125°C.
The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to VCC. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.
The SN75LBC031 is characterized for operation from -40°C to 85°C. The SN65LBC031 is characterized for operation from -40°C to 125°C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40°C to 125°C. | CANbus | Surface Mount | 8-SOIC | Transceiver | 3.9 mm | 8-SOIC | Half | 180 mV | -40 °C | 85 °C | 5.5 V | 4.5 V |
Texas Instruments SN75LBC031DThe SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to VCC. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.
The SN75LBC031 is characterized for operation from -40°C to 85°C. The SN65LBC031 is characterized for operation from -40°C to 125°C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40°C to 125°C.
The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to VCC. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.
The SN75LBC031 is characterized for operation from -40°C to 85°C. The SN65LBC031 is characterized for operation from -40°C to 125°C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40°C to 125°C. | CANbus | Surface Mount | 8-SOIC | Transceiver | 3.9 mm | 8-SOIC | Half | 180 mV | -40 °C | 85 °C | 5.5 V | 4.5 V |
Description
General part information
75LBC031 Series
The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to VCC. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.
The SN75LBC031 is characterized for operation from -40°C to 85°C. The SN65LBC031 is characterized for operation from -40°C to 125°C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40°C to 125°C.
The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to VCC. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.
Documents
Technical documentation and resources