Zenode.ai Logo
LM7322QMAX/NOPB - https://ti.com/content/dam/ticom/images/products/package/d/d0008a.png

LM7322QMAX/NOPB

Active
Texas Instruments

AUTOMOTIVE-GRADE, DUAL, 32-V, 20-MHZ OPERATIONAL AMPLIFIER 8-SOIC -40 TO 125

Deep-Dive with AI

Search across all available documentation for this part.

LM7322QMAX/NOPB - https://ti.com/content/dam/ticom/images/products/package/d/d0008a.png

LM7322QMAX/NOPB

Active
Texas Instruments

AUTOMOTIVE-GRADE, DUAL, 32-V, 20-MHZ OPERATIONAL AMPLIFIER 8-SOIC -40 TO 125

Deep-Dive with AI

Technical Specifications

Parameters and characteristics commom to parts in this series

SpecificationLM7322QMAX/NOPBLM7322 Series
Amplifier TypeGeneral PurposeGeneral Purpose
Current - Input Bias1.1 µA1.1 µA
Current - Output / Channel100 mA100 mA
Current - Supply2.5 mA2.5 mA
Current - Supply [custom]22
Gain Bandwidth Product20 MHz20 MHz
GradeAutomotiveAutomotive
Mounting TypeSurface MountSurface Mount
Number of Circuits22
Operating Temperature [Max]125 °C125 °C
Operating Temperature [Min]-40 °C-40 °C
Output TypeRail-to-RailRail-to-Rail
Package / Case3.9 mm0.118 - 3.9 mm
Package / Case8-SOIC8-SOIC, 8-TSSOP, 8-MSOP
Package / Case-3 mm
QualificationAEC-Q100AEC-Q100
Slew Rate18 V/µs18 V/µs
Supplier Device Package8-SOIC8-SOIC
Voltage - Input Offset700 µV700 µV
Voltage - Supply Span (Max) [Max]32 V32 V
Voltage - Supply Span (Min) [Min]2.5 V2.5 V

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

LM7322 Series

Dual, 32-V, 20-MHz operational amplifier

PartOperating Temperature [Max]Operating Temperature [Min]Current - Input BiasGain Bandwidth ProductAmplifier TypeSupplier Device PackageCurrent - Supply [custom]Current - SupplySlew RateOutput TypeVoltage - Supply Span (Max) [Max]GradeCurrent - Output / ChannelQualificationVoltage - Supply Span (Min) [Min]Mounting TypePackage / CasePackage / CaseVoltage - Input OffsetNumber of CircuitsPackage / Case
Texas Instruments
LM7322QMAX/NOPB
The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance. The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance.
125 °C
-40 °C
1.1 µA
20 MHz
General Purpose
8-SOIC
2
2.5 mA
18 V/µs
Rail-to-Rail
32 V
Automotive
100 mA
AEC-Q100
2.5 V
Surface Mount
3.9 mm
8-SOIC
700 µV
2
Texas Instruments
LM7322QMA/NOPB
The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance. The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance.
125 °C
-40 °C
1.1 µA
20 MHz
General Purpose
8-SOIC
2
2.5 mA
18 V/µs
Rail-to-Rail
32 V
Automotive
100 mA
AEC-Q100
2.5 V
Surface Mount
3.9 mm
8-SOIC
700 µV
2
Texas Instruments
LM7322MMX/NOPB
General Purpose Amplifier 2 Circuit Rail-to-Rail 8-VSSOP
125 °C
-40 °C
1.1 µA
20 MHz
General Purpose
2
2.5 mA
18 V/µs
Rail-to-Rail
32 V
100 mA
2.5 V
Surface Mount
0.118 in
8-MSOP, 8-TSSOP
700 µV
2
3 mm
Texas Instruments
LM7322MM/NOPB
The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance. The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance.
125 °C
-40 °C
1.1 µA
20 MHz
General Purpose
2
2.5 mA
18 V/µs
Rail-to-Rail
32 V
100 mA
2.5 V
Surface Mount
0.118 in
8-MSOP, 8-TSSOP
700 µV
2
3 mm
Texas Instruments
LM7322MA/NOPB
The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance. The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance.
125 °C
-40 °C
1.1 µA
20 MHz
General Purpose
8-SOIC
2
2.5 mA
18 V/µs
Rail-to-Rail
32 V
100 mA
2.5 V
Surface Mount
3.9 mm
8-SOIC
700 µV
2
Texas Instruments
LM7322MAX/NOPB
The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance. The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V. The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications. Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322x are offered in a space-saving 8-Pin VSSOP package. The LM7321x are offered in small SOT-23 package, which makes it easy to place this part close to sensors for better circuit performance.
125 °C
-40 °C
1.1 µA
20 MHz
General Purpose
8-SOIC
2
2.5 mA
18 V/µs
Rail-to-Rail
32 V
100 mA
2.5 V
Surface Mount
3.9 mm
8-SOIC
700 µV
2

Description

General part information

LM7322 Series

The LM732xx devices are rail-to-rail input and output amplifiers with wide operating voltages and high-output currents. The LM732xx family is efficient, achieving 18-V/µs slew rate and 20-MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM732xx device performance is fully specified for operation at 2.7 V, ±5 V and ±15 V.

The LM732xx devices are designed to drive unlimited capacitive loads without oscillations. All LM7321x and LM7322x parts are tested at –40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from –40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications.

Greater than rail-to-rail input common-mode voltage range with 50 dB of common-mode rejection across this wide voltage range, allows both high-side and low-side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head- room from either rail (300 mV) at low distortion (0.05% THD+Noise).