Zenode.ai Logo
TLE2037ID - 8-SOIC

TLE2037ID

Active
Texas Instruments

LOW-NOISE HIGH-SPEED PRECISION DECOMP. OPERATIONAL AMPLIFIER 8-SOIC

Deep-Dive with AI

Search across all available documentation for this part.

TLE2037ID - 8-SOIC

TLE2037ID

Active
Texas Instruments

LOW-NOISE HIGH-SPEED PRECISION DECOMP. OPERATIONAL AMPLIFIER 8-SOIC

Technical Specifications

Parameters and characteristics commom to parts in this series

SpecificationTLE2037IDTLE2037 Series
Amplifier TypeGeneral PurposeGeneral Purpose
Current - Input Bias15 nA15 nA
Current - Output / Channel50 mA50 mA
Current - Supply3.8 mA3.8 mA
Gain Bandwidth Product50 MHz50 MHz
Grade-Automotive
Mounting TypeSurface MountSurface Mount
Number of Circuits11
Operating Temperature [Max]70 ░C70 - 125 ░C
Operating Temperature [Min]0 °C-55 - 0 °C
Package / Case3.9 mm3.9 mm
Package / Case8-SOIC8-SOIC
Qualification-AEC-Q100
Slew Rate7.5 V/çs7.5 V/çs
Supplier Device Package8-SOIC8-SOIC
Voltage - Input Offset20 çV10 - 20 çV
Voltage - Supply Span (Max) [Max]38 V38 V
Voltage - Supply Span (Min) [Min]8 V8 V

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

TLE2037 Series

Automotive Excalibur Low-Noise High-Speed Precision Operational Amplifiers

PartAmplifier TypeCurrent - Input BiasVoltage - Supply Span (Min) [Min]Operating Temperature [Max]Operating Temperature [Min]Current - Output / ChannelVoltage - Supply Span (Max) [Max]Mounting TypeSlew RatePackage / CasePackage / CaseVoltage - Input OffsetGain Bandwidth ProductNumber of CircuitsSupplier Device PackageCurrent - SupplyGradeQualification
Texas Instruments
TLE2037CDG4
General Purpose Amplifier 1 Circuit 8-SOIC
General Purpose
15 nA
8 V
70 ░C
0 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
20 çV
50 MHz
1
8-SOIC
3.8 mA
Texas Instruments
TLE2037IDRG4
General Purpose Amplifier 1 Circuit 8-SOIC
General Purpose
15 nA
8 V
70 ░C
0 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
20 çV
50 MHz
1
8-SOIC
3.8 mA
Texas Instruments
TLE2037AQDRQ1
The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hzand 2.5 nV/√Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The Q-suffix devices are characterized for operation from –40°C to 125°C. The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hzand 2.5 nV/√Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The Q-suffix devices are characterized for operation from –40°C to 125°C.
General Purpose
15 nA
8 V
125 °C
-40 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
10 µV
50 MHz
1
8-SOIC
3.8 mA
Automotive
AEC-Q100
Texas Instruments
TLE2037AMD
The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C. The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.
General Purpose
15 nA
8 V
125 °C
-55 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
10 µV
50 MHz
1
8-SOIC
3.8 mA
Texas Instruments
TLE2037IDR
The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C. The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.
General Purpose
15 nA
8 V
70 ░C
0 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
20 çV
50 MHz
1
8-SOIC
3.8 mA
Texas Instruments
TLE2037CD
The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C. The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.
General Purpose
15 nA
8 V
70 ░C
0 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
20 çV
50 MHz
1
8-SOIC
3.8 mA
Texas Instruments
TLE2037AQDRG4Q1
The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hzand 2.5 nV/√Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The Q-suffix devices are characterized for operation from –40°C to 125°C. The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hzand 2.5 nV/√Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The Q-suffix devices are characterized for operation from –40°C to 125°C.
General Purpose
15 nA
8 V
125 °C
-40 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
10 µV
50 MHz
1
8-SOIC
3.8 mA
Automotive
AEC-Q100
Texas Instruments
TLE2037ID
The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C. The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.
General Purpose
15 nA
8 V
70 ░C
0 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
20 çV
50 MHz
1
8-SOIC
3.8 mA
Texas Instruments
TLE2037AMDG4
The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C. The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hzand 2.5 nV/Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.
General Purpose
15 nA
8 V
125 °C
-55 °C
50 mA
38 V
Surface Mount
7.5 V/çs
3.9 mm
8-SOIC
10 µV
50 MHz
1
8-SOIC
3.8 mA

Description

General part information

TLE2037 Series

The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices.

In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ).

The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hzand 2.5 nV/√Hzat frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater.