
TPIC6A259DW
Active8-BIT ADDRESSABLE LATCH WITH 350MA/CH 24-SOIC -40 TO 125
Deep-Dive with AI
Search across all available documentation for this part.

TPIC6A259DW
Active8-BIT ADDRESSABLE LATCH WITH 350MA/CH 24-SOIC -40 TO 125
Deep-Dive with AI
Technical Specifications
Parameters and characteristics commom to parts in this series
Specification | TPIC6A259DW | TPIC6A259 Series |
---|---|---|
Circuit | 1:8 | 1:8 |
Delay Time - Propagation | 30 ns | 30 ns |
Independent Circuits | 1 | 1 |
Logic Type | D-Type, Addressable | D-Type, Addressable |
Mounting Type | Surface Mount | Surface Mount |
Operating Temperature [Max] | 125 °C | 125 °C |
Operating Temperature [Min] | -40 °C | -40 °C |
Output Type | DMOS | DMOS |
Package / Case | 24-SOIC | 24-SOIC |
Package / Case [x] | 0.295 in | 0.295 in |
Package / Case [y] | 7.5 mm | 7.5 mm |
Supplier Device Package | 24-SOIC | 24-SOIC |
Voltage - Supply [Max] | 5.5 V | 5.5 V |
Voltage - Supply [Min] | 4.5 V | 4.5 V |
Pricing
Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly
TPIC6A259 Series
8-bit addressable latch with 350mA/ch
Part | Supplier Device Package | Output Type | Operating Temperature [Max] | Operating Temperature [Min] | Voltage - Supply [Max] | Voltage - Supply [Min] | Independent Circuits | Circuit | Package / Case [y] | Package / Case [x] | Package / Case | Mounting Type | Logic Type | Delay Time - Propagation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Texas Instruments TPIC6A259DWThis power logic 8-bit addressable latch controls open-drain DMOS-transistor outputs and is designed for general-purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and decoders or demultiplexers. This is a multi-functional device capable of operating as eight addressable latches or an 8-line demultiplexer with active-low DMOS outputs. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.
Four distinct modes of operation are selectable by controlling the clear (CLR\) and enable (G\) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in (D) terminal is written into the addressed latch. The addressed DMOS-transistor output inverts the data input with all unaddressed DMOS-transistor outputs remaining in their previous states. In the memory mode, all DMOS-transistor outputs remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latch, enable G\ should be held high (inactive) while the address lines are changing. In the 8-line demultiplexing mode, the addressed output is inverted with respect to the D input and all other outputs are high. In the clear mode, all outputs are high and unaffected by the address and data inputs.
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.
The TPIC6A259 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body, surface-mount (DW) package. The TPIC6A259 is characterized for operation over the operating case temperature range of -40°C to 125°C.
This power logic 8-bit addressable latch controls open-drain DMOS-transistor outputs and is designed for general-purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and decoders or demultiplexers. This is a multi-functional device capable of operating as eight addressable latches or an 8-line demultiplexer with active-low DMOS outputs. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.
Four distinct modes of operation are selectable by controlling the clear (CLR\) and enable (G\) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in (D) terminal is written into the addressed latch. The addressed DMOS-transistor output inverts the data input with all unaddressed DMOS-transistor outputs remaining in their previous states. In the memory mode, all DMOS-transistor outputs remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latch, enable G\ should be held high (inactive) while the address lines are changing. In the 8-line demultiplexing mode, the addressed output is inverted with respect to the D input and all other outputs are high. In the clear mode, all outputs are high and unaffected by the address and data inputs.
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.
The TPIC6A259 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body, surface-mount (DW) package. The TPIC6A259 is characterized for operation over the operating case temperature range of -40°C to 125°C. | 24-SOIC | DMOS | 125 °C | -40 °C | 5.5 V | 4.5 V | 1 | 1:8 | 7.5 mm | 0.295 in | 24-SOIC | Surface Mount | D-Type, Addressable | 30 ns |
Texas Instruments TPIC6A259DWRG4This power logic 8-bit addressable latch controls open-drain DMOS-transistor outputs and is designed for general-purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and decoders or demultiplexers. This is a multi-functional device capable of operating as eight addressable latches or an 8-line demultiplexer with active-low DMOS outputs. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.
Four distinct modes of operation are selectable by controlling the clear (CLR\) and enable (G\) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in (D) terminal is written into the addressed latch. The addressed DMOS-transistor output inverts the data input with all unaddressed DMOS-transistor outputs remaining in their previous states. In the memory mode, all DMOS-transistor outputs remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latch, enable G\ should be held high (inactive) while the address lines are changing. In the 8-line demultiplexing mode, the addressed output is inverted with respect to the D input and all other outputs are high. In the clear mode, all outputs are high and unaffected by the address and data inputs.
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.
The TPIC6A259 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body, surface-mount (DW) package. The TPIC6A259 is characterized for operation over the operating case temperature range of -40°C to 125°C.
This power logic 8-bit addressable latch controls open-drain DMOS-transistor outputs and is designed for general-purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and decoders or demultiplexers. This is a multi-functional device capable of operating as eight addressable latches or an 8-line demultiplexer with active-low DMOS outputs. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.
Four distinct modes of operation are selectable by controlling the clear (CLR\) and enable (G\) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in (D) terminal is written into the addressed latch. The addressed DMOS-transistor output inverts the data input with all unaddressed DMOS-transistor outputs remaining in their previous states. In the memory mode, all DMOS-transistor outputs remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latch, enable G\ should be held high (inactive) while the address lines are changing. In the 8-line demultiplexing mode, the addressed output is inverted with respect to the D input and all other outputs are high. In the clear mode, all outputs are high and unaffected by the address and data inputs.
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.
The TPIC6A259 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body, surface-mount (DW) package. The TPIC6A259 is characterized for operation over the operating case temperature range of -40°C to 125°C. | 24-SOIC | DMOS | 125 °C | -40 °C | 5.5 V | 4.5 V | 1 | 1:8 | 7.5 mm | 0.295 in | 24-SOIC | Surface Mount | D-Type, Addressable | 30 ns |
Texas Instruments TPIC6A259DWG4This power logic 8-bit addressable latch controls open-drain DMOS-transistor outputs and is designed for general-purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and decoders or demultiplexers. This is a multi-functional device capable of operating as eight addressable latches or an 8-line demultiplexer with active-low DMOS outputs. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.
Four distinct modes of operation are selectable by controlling the clear (CLR\) and enable (G\) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in (D) terminal is written into the addressed latch. The addressed DMOS-transistor output inverts the data input with all unaddressed DMOS-transistor outputs remaining in their previous states. In the memory mode, all DMOS-transistor outputs remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latch, enable G\ should be held high (inactive) while the address lines are changing. In the 8-line demultiplexing mode, the addressed output is inverted with respect to the D input and all other outputs are high. In the clear mode, all outputs are high and unaffected by the address and data inputs.
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.
The TPIC6A259 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body, surface-mount (DW) package. The TPIC6A259 is characterized for operation over the operating case temperature range of -40°C to 125°C.
This power logic 8-bit addressable latch controls open-drain DMOS-transistor outputs and is designed for general-purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and decoders or demultiplexers. This is a multi-functional device capable of operating as eight addressable latches or an 8-line demultiplexer with active-low DMOS outputs. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.
Four distinct modes of operation are selectable by controlling the clear (CLR\) and enable (G\) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in (D) terminal is written into the addressed latch. The addressed DMOS-transistor output inverts the data input with all unaddressed DMOS-transistor outputs remaining in their previous states. In the memory mode, all DMOS-transistor outputs remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latch, enable G\ should be held high (inactive) while the address lines are changing. In the 8-line demultiplexing mode, the addressed output is inverted with respect to the D input and all other outputs are high. In the clear mode, all outputs are high and unaffected by the address and data inputs.
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.
The TPIC6A259 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body, surface-mount (DW) package. The TPIC6A259 is characterized for operation over the operating case temperature range of -40°C to 125°C. | 24-SOIC | DMOS | 125 °C | -40 °C | 5.5 V | 4.5 V | 1 | 1:8 | 7.5 mm | 0.295 in | 24-SOIC | Surface Mount | D-Type, Addressable | 30 ns |
Description
General part information
TPIC6A259 Series
This power logic 8-bit addressable latch controls open-drain DMOS-transistor outputs and is designed for general-purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and decoders or demultiplexers. This is a multi-functional device capable of operating as eight addressable latches or an 8-line demultiplexer with active-low DMOS outputs. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.
Four distinct modes of operation are selectable by controlling the clear (CLR\) and enable (G\) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in (D) terminal is written into the addressed latch. The addressed DMOS-transistor output inverts the data input with all unaddressed DMOS-transistor outputs remaining in their previous states. In the memory mode, all DMOS-transistor outputs remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latch, enable G\ should be held high (inactive) while the address lines are changing. In the 8-line demultiplexing mode, the addressed output is inverted with respect to the D input and all other outputs are high. In the clear mode, all outputs are high and unaffected by the address and data inputs.
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.
Documents
Technical documentation and resources