Zenode.ai Logo
STPSC20G12WLY - STMICROELECTRONICS STPSC20H12WL

STPSC20G12WLY

Active
STMicroelectronics

AUTOMOTIVE 1200 V, 20A POWER SCHOTTKY HIGH SURGE SILICON CARBIDE DIODE

Deep-Dive with AI

Search across all available documentation for this part.

STPSC20G12WLY - STMICROELECTRONICS STPSC20H12WL

STPSC20G12WLY

Active
STMicroelectronics

AUTOMOTIVE 1200 V, 20A POWER SCHOTTKY HIGH SURGE SILICON CARBIDE DIODE

Deep-Dive with AI

Technical Specifications

Parameters and characteristics commom to parts in this series

SpecificationSTPSC20G12WLYSTPSC20 Series
Capacitance @ Vr, F-1548 - 1650 pF
Current - Average Rectified (Io) (per Diode)-10 - 25 A
Current - Reverse Leakage @ Vr150 µA60 - 150 µA
Diode Configuration-1 Pair Common Cathode
GradeAutomotiveAutomotive
Mounting TypeThrough HoleSurface Mount, Through Hole
Operating Temperature - Junction [Max]175 ░C175 ░C
Operating Temperature - Junction [Min]-55 C-55 - -40 °C
Package / CaseTO-247-2D2PAK (2 Leads + Tab), TO-263AB, TO-263-3, TO-247-2, TO-247-3, TO-220-3
QualificationAEC-Q101AEC-Q101
Reverse Recovery Time (trr)-0 ns
Speed200 mA, 500 ns200 - 500 mA
Speed-No Recovery Time
Supplier Device PackageDO-247 LLD2PAK HV, DO-247 LL, TO-247-3, TO-220, D2PAK
TechnologySiC (Silicon Carbide) SchottkySiC (Silicon Carbide) Schottky
Voltage - DC Reverse (Vr) (Max) [Max]1.2 kV1.2 - 650 kV
Voltage - Forward (Vf) (Max) @ If1.5 V1.5 - 1.75 V

STPSC20 Series

Automotive 650 V, 20 A High Surge Silicon Carbide Power Schottky Diode

PartTechnologyMounting TypePackage / CaseOperating Temperature - Junction [Min]Operating Temperature - Junction [Max]Current - Reverse Leakage @ VrCapacitance @ Vr, FVoltage - Forward (Vf) (Max) @ IfVoltage - DC Reverse (Vr) (Max) [Max]Reverse Recovery Time (trr)Supplier Device PackageSpeedQualificationSpeedGradeDiode ConfigurationCurrent - Average Rectified (Io) (per Diode)
STMicroelectronics
STPSC20H12G2-TR
SiC (Silicon Carbide) Schottky
Surface Mount
D2PAK (2 Leads + Tab), TO-263-3, TO-263AB
-40 °C
175 ░C
120 µA
1650 pF
1.5 V
1.2 kV
0 ns
D2PAK HV
No Recovery Time
STMicroelectronics
STPSC20G12WLY
SiC (Silicon Carbide) Schottky
Through Hole
TO-247-2
-55 C
175 ░C
150 µA
1.5 V
1.2 kV
DO-247 LL
AEC-Q101
200 mA, 500 ns
Automotive
STMicroelectronics
STPSC20H065CWLY
SiC (Silicon Carbide) Schottky
Through Hole
TO-247-3
-40 °C
175 ░C
100 µA
1.65 V
650 V
0 ns
TO-247-3
No Recovery Time
AEC-Q101
Automotive
1 Pair Common Cathode
10 A
STMicroelectronics
STPSC20H065CTY
SiC (Silicon Carbide) Schottky
Through Hole
TO-220-3
-40 °C
175 ░C
100 µA
1.75 V
650 V
TO-220
AEC-Q101
200 mA, 500 ns
Automotive
1 Pair Common Cathode
10 A
STMicroelectronics
STPSC20H12G-TR
SiC (Silicon Carbide) Schottky
Surface Mount
D2PAK (2 Leads + Tab), TO-263-3, TO-263AB
-40 °C
175 ░C
120 µA
1650 pF
1.5 V
1.2 kV
0 ns
D2PAK
No Recovery Time
STMicroelectronics
STPSC20H12CWL
SiC (Silicon Carbide) Schottky
Through Hole
TO-247-3
-40 °C
175 ░C
60 µA
1.5 V
1.2 kV
0 ns
TO-247-3
No Recovery Time
1 Pair Common Cathode
25 A
STMicroelectronics
STPSC20G12WL
SiC (Silicon Carbide) Schottky
Through Hole
TO-247-2
-55 C
175 ░C
150 µA
1548 pF
1.5 V
1.2 kV
DO-247 LL
200 mA, 500 ns

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

DistributorPackageQuantity$
DigikeyTube 1$ 11.86
30$ 9.47
120$ 8.47
510$ 7.47
1020$ 6.73
NewarkEach 1$ 15.45
10$ 11.18
25$ 10.94
50$ 10.57
100$ 10.32
250$ 10.05

Description

General part information

STPSC20 Series

The SiC diode is an ultrahigh performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature and are ideal for automotive applications.

Especially suited for use in PFC applications, this ST SiC diode will boost the performance in hard switching conditions. Its high forward surge capability ensures a good robustness during transient phases.